Systematic Computer-Assisted Proof of Branches of Stable Elliptic Periodic Orbits and Surrounding Invariant Tori

We present a concurrent algorithm for rigorous validation of the existence of continuous branches of stable elliptic fixed points for area-preserving planar maps. The method utilizes a classical theorem of Siegel and Moser combined with computed-assisted estimation of higher order derivatives of maps, continuation along the parameter range, and concurrent scheduling of tasks. We apply the algorithm to certain exemplary Poincare maps coming from reversible or Hamiltonian systems: the periodically forced pendulum equations, the Michelson system, and the Henon--Heiles Hamiltonian. Moreover, our algorithm provides at once a computer-assisted proof of the existence of wide branches of stable elliptic periodic solutions and the existence of invariant tori surrounding them.

[1]  Divakar Viswanath,et al.  The Lindstedt-Poincaré Technique as an Algorithm for Computing Periodic Orbits , 2001, SIAM Rev..

[2]  Piotr Zgliczynski,et al.  C1 Lohner Algorithm , 2002, Found. Comput. Math..

[3]  Cvitanovic,et al.  Invariant measurement of strange sets in terms of cycles. , 1988, Physical review letters.

[4]  Roberto Barrio,et al.  A database of rigorous and high-precision periodic orbits of the Lorenz model , 2015, Comput. Phys. Commun..

[5]  George Huitema,et al.  Quasi-periodic motions in families of dynamical systems , 1996 .

[6]  M. Baranger,et al.  Bifurcations of periodic trajectories in non-integrable Hamiltonian systems with two degrees of freedom: Numerical and analytical results , 1987 .

[7]  Roberto Barrio,et al.  Bifurcations and Chaos in Hamiltonian Systems , 2010, Int. J. Bifurc. Chaos.

[8]  C. Simó,et al.  Computer assisted proof for normally hyperbolic invariant manifolds , 2011, 1105.1277.

[9]  R. Barrio,et al.  Efficient computational approaches to obtain periodic orbits in Hamiltonian systems: application to the motion of a lunar orbiter , 2016 .

[10]  D. Wilczak,et al.  Topological method for symmetric periodic orbits for maps with a reversing symmetry , 2004, math/0401145.

[11]  D. Wilczak,et al.  C-Lohner algorithm , 2011 .

[12]  A. Neumaier Interval methods for systems of equations , 1990 .

[13]  Maciej J. Capinski,et al.  Existence of a Center Manifold in a Practical Domain around L1 in the Restricted Three-Body Problem , 2011, SIAM J. Appl. Dyn. Syst..

[14]  H. Kokubu,et al.  Rigorous verification of cocoon bifurcations in the Michelson system , 2007 .

[15]  V. Gelfreich Near strongly resonant periodic orbits in a Hamiltonian system , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Daniel Wilczak The Existence of Shilnikov Homoclinic Orbits in the Michelson System: A Computer Assisted Proof , 2006, Found. Comput. Math..

[17]  Jordi-Lluís Figueras,et al.  Rigorous Computer-Assisted Application of KAM Theory: A Modern Approach , 2016, Found. Comput. Math..

[18]  V. Arnold,et al.  Mathematical aspects of classical and celestial mechanics , 1997 .

[19]  Jordi-Lluís Figueras,et al.  Reliable Computation of Robust Response Tori on the Verge of Breakdown , 2012, SIAM J. Appl. Dyn. Syst..

[20]  Cone Conditions and Covering Relations for Topologically Normally Hyperbolic Invariant Manifolds , 2011, 1103.1959.

[21]  M. N. Vrahatisa,et al.  Application of the Characteristic Bisection Method for locating and computing periodic orbits in molecular systems , 2000 .

[22]  Jean-Philippe Lessard,et al.  Parameterization of Invariant Manifolds for Periodic Orbits I: Efficient Numerics via the Floquet Normal Form , 2015, SIAM J. Appl. Dyn. Syst..

[23]  Yun-Tung Lau THE "COCOON" BIFURCATIONS IN THREE-DIMENSONAL SYSTEMS WITH TWO FIXED POINTS , 1992 .

[24]  J. D. M. James Polynomial approximation of one parameter families of (un)stable manifolds with rigorous computer assisted error bounds , 2015 .

[25]  Roberto Barrio,et al.  Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems , 2009 .

[26]  Christopher K McCord Uniqueness of Connecting Orbits in the Equation Y(3) = Y2 - 1. , 1986 .

[27]  George D. Birkhoff,et al.  The restricted problem of three bodies , 1915 .

[28]  F. Dumortier,et al.  Cocoon bifurcation in three-dimensional reversible vector fields , 2006 .

[29]  Freddy Dumortier,et al.  New aspects in the unfolding of the nilpotent singularity of codimension three , 2001 .

[30]  D. Wilczak Chaos in the Kuramoto–Sivashinsky equations—a computer-assisted proof , 2003 .

[31]  Jeroen S. W. Lamb,et al.  Reversing symmetries in dynamical systems , 1992 .

[32]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[33]  Roberto Barrio,et al.  Systematic Computer Assisted Proofs of periodic orbits of Hamiltonian systems , 2014, Commun. Nonlinear Sci. Numer. Simul..

[34]  Roberto Barrio,et al.  Computer-assisted proof of skeletons of periodic orbits , 2012, Comput. Phys. Commun..

[35]  Carles Simó,et al.  Resonant zones, inner and outer splittings in generic and low order resonances of area preserving maps , 2009 .

[36]  E. J. Doedel,et al.  AUTO: a program for the automatic bifurcation analysis of autonomous systems , 1980 .

[37]  T. Kapela,et al.  Rigorous KAM results around arbitrary periodic orbits for Hamiltonian systems , 2011, 1105.3235.

[38]  Bernd Krauskopf,et al.  Strong resonances and Takens’s Utrecht preprint , 2001 .

[39]  INSTABILITY IN A HAMILTONIAN SYSTEM AND THE DISTRIBUTION OF ASTEROIDS , 1970 .

[40]  Peter Schmelcher,et al.  Detecting Unstable Periodic Orbits of Chaotic Dynamical Systems , 1997 .

[41]  Roberto Barrio,et al.  Bounds for the chaotic region in the Lorenz model , 2009 .

[42]  Kenneth R. Meyer,et al.  Generic Bifurcation of Periodic Points , 2020, Hamiltonian Dynamical Systems.

[43]  Stavros C. Farantos POMULT: A program for computing periodic orbits in hamiltonian systems based on multiple shooting algorithms , 1998 .

[44]  Daniel Wilczak,et al.  Symmetric Heteroclinic Connections in the Michelson System: A Computer Assisted Proof , 2005, SIAM J. Appl. Dyn. Syst..

[45]  M. Tadi On computing periodic orbits , 2005 .

[46]  Roberto Barrio,et al.  Bifurcations and safe regions in open Hamiltonians , 2009 .

[47]  D Michelson,et al.  Steady solutions of the Kuramoto-Sivashinsky equation , 1986 .

[48]  Roberto Barrio,et al.  A three-parametric study of the Lorenz model , 2007 .

[49]  Jürgen Moser,et al.  Lectures on Celestial Mechanics , 1971 .

[50]  Roberto Barrio,et al.  Fractal structures in the Hénon-Heiles Hamiltonian , 2008 .

[51]  Auerbach,et al.  Exploring chaotic motion through periodic orbits. , 1987, Physical review letters.

[52]  Jeroen S. W. Lamb,et al.  Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in R 3 , 2005 .