Irbesartan overcomes gemcitabine resistance in pancreatic cancer by suppressing stemness and iron metabolism via inhibition of the Hippo/YAP1/c-Jun axis

[1]  E. Puré,et al.  Mechanisms of PDAC subtype heterogeneity and therapy response. , 2022, Trends in cancer.

[2]  G. Koifman,et al.  USP25 promotes pathological HIF-1-driven metabolic reprogramming and is a potential therapeutic target in pancreatic cancer , 2022, Nature Communications.

[3]  F. Tang,et al.  Integrated single-cell multiomics analysis reveals novel candidate markers for prognosis in human pancreatic ductal adenocarcinoma , 2022, Cell discovery.

[4]  Nora C. Toussaint,et al.  Drug screening and genome editing in human pancreatic cancer organoids identifies drug-gene interactions and candidates for off-label therapy , 2022, Cell genomics.

[5]  A. Trumpp,et al.  TNF-α-producing macrophages determine subtype identity and prognosis via AP1 enhancer reprogramming in pancreatic cancer , 2021, Nature Cancer.

[6]  M. Löhr,et al.  Pancreatic Ductal Adenocarcinoma: Preclinical in vitro and ex vivo Models , 2021, Frontiers in Cell and Developmental Biology.

[7]  V. Bhardwaj,et al.  Therapeutic resistance in pancreatic ductal adenocarcinoma: Current challenges and future opportunities , 2021, World journal of gastroenterology.

[8]  K. Ohishi,et al.  Irbesartan, an angiotensin II type 1 receptor blocker, inhibits colitis-associated tumourigenesis by blocking the MCP-1/CCR2 pathway , 2021, Scientific Reports.

[9]  P. Gibbs,et al.  The Diverse Applications of Pancreatic Ductal Adenocarcinoma Organoids , 2021, Cancers.

[10]  Tara N Fujimoto,et al.  Feasibility of administering human pancreatic cancer chemotherapy in a spontaneous pancreatic cancer mouse model , 2021, BMC Cancer.

[11]  J. Clohessy,et al.  Targeting Pin1 renders pancreatic cancer eradicable by synergizing with immunochemotherapy , 2021, Cell.

[12]  F. Gao,et al.  Pancreatic cancer: A review of epidemiology, trend, and risk factors , 2021, World journal of gastroenterology.

[13]  M. Morsy,et al.  Protective Effects of Irbesartan, an Angiotensin Receptor Blocker with PPARγ Agonistic Activity, against Estradiol Benzoate-Induced Endometrial Hyperplasia and Atypia in Female Rats via Modulation of TNFα/Survivin Pathway , 2021, Pharmaceuticals.

[14]  K. Koike,et al.  Molecular and Phenotypic Profiling for Precision Medicine in Pancreatic Cancer: Current Advances and Future Perspectives , 2021, Frontiers in Oncology.

[15]  Yu Guo,et al.  ESE3/EHF, a promising target of rosiglitazone, suppresses pancreatic cancer stemness by downregulating CXCR4 , 2021, Gut.

[16]  R. Wolff,et al.  Modified gemcitabine plus nab‐paclitaxel regimen in advanced pancreatic ductal adenocarcinoma , 2020, Cancer medicine.

[17]  Joe T. Sharick,et al.  Metabolic Heterogeneity in Patient Tumor-Derived Organoids by Primary Site and Drug Treatment , 2020, Frontiers in Oncology.

[18]  T. Aittokallio,et al.  SynergyFinder 2.0: visual analytics of multi-drug combination synergies , 2020, Nucleic Acids Res..

[19]  Stephen A. Sastra,et al.  Cysteine depletion induces pancreatic tumor ferroptosis in mice , 2020, Science.

[20]  Steven J. M. Jones,et al.  Transcription phenotypes of pancreatic cancer are driven by genomic events during tumor evolution , 2020, Nature Genetics.

[21]  K. Yoon,et al.  Development of Patient-Derived Preclinical Platform for Metastatic Pancreatic Cancer: PDOX and a Subsequent Organoid Model System Using Percutaneous Biopsy Samples , 2019, Front. Oncol..

[22]  H. Clevers,et al.  Xenograft and organoid model systems in cancer research , 2019, The EMBO journal.

[23]  A. Scarpa,et al.  Preclinical Modelling of PDA: Is Organoid the New Black? , 2019, International journal of molecular sciences.

[24]  Xuexiang Han,et al.  Targeted Co-delivery of the Iron Chelator Deferoxamine and a HIF1α Inhibitor Impairs Pancreatic Tumor Growth. , 2019, ACS nano.

[25]  Jun Yao,et al.  YAP 1 oncogene is a context-specific driver for pancreatic ductal adenocarcinoma , 2019 .

[26]  D. Franchimont,et al.  Stratification of Pancreatic Ductal Adenocarcinomas Based on Tumor and Microenvironment Features. , 2018, Gastroenterology.

[27]  H. Yoshiji,et al.  Angiotensin receptor blockade attenuates cholangiocarcinoma cell growth by inhibiting the oncogenic activity of Yes-associated protein. , 2018, Cancer letters.

[28]  Andrey Rzhetsky,et al.  Human Organoids Share Structural and Genetic Features with Primary Pancreatic Adenocarcinoma Tumors , 2018, Molecular Cancer Research.

[29]  Y. Morine,et al.  Nab‐paclitaxel interrupts cancer‐stromal interaction through C‐X‐C motif chemokine 10‐mediated interleukin‐6 downregulation in vitro , 2018, Cancer science.

[30]  Robert E Denroche,et al.  Organoid Profiling Identifies Common Responders to Chemotherapy in Pancreatic Cancer. , 2018, Cancer discovery.

[31]  Xiaoping Zhou,et al.  YAP1 Oncogene is a Context-specific Driver for Pancreatic Ductal Adenocarcinoma , 2018, bioRxiv.

[32]  Deena M A Gendoo,et al.  Whole genomes define concordance of matched primary, xenograft, and organoid models of pancreas cancer , 2017, bioRxiv.

[33]  M. Reni,et al.  CanStem111P trial: A phase III study of napabucasin (BBI-608) plus nab-paclitaxel (nab-PTX) with gemcitabine (gem) in adult patients with metastatic pancreatic adenocarcinoma (mPDAC). , 2017 .

[34]  Tero Aittokallio,et al.  SynergyFinder: a web application for analyzing drug combination dose–response matrix data , 2017, Bioinform..

[35]  R. Jain,et al.  Obesity-Induced Inflammation and Desmoplasia Promote Pancreatic Cancer Progression and Resistance to Chemotherapy. , 2016, Cancer discovery.

[36]  Gordon Keller,et al.  Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell– and patient-derived tumor organoids , 2015, Nature Medicine.

[37]  J. Sage,et al.  Control of Proliferation and Cancer Growth by the Hippo Signaling Pathway , 2015, Molecular Cancer Research.

[38]  Jen Jen Yeh,et al.  Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma , 2015, Nature Genetics.

[39]  T. Mizushima,et al.  Zidovudine, an anti-viral drug, resensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine by inhibition of the Akt-GSK3β-Snail pathway , 2015, Cell Death and Disease.

[40]  O. Larsson,et al.  A phase I pilot study of the insulin-like growth factor 1 receptor pathway modulator AXL1717 in combination with gemcitabine HCl and carboplatin in previously untreated, locally advanced, or metastatic non-small cell lung cancer , 2015, Medical Oncology.

[41]  M. Spector,et al.  Organoid Models of Human and Mouse Ductal Pancreatic Cancer , 2015, Cell.

[42]  Rakesh K. Jain,et al.  Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels , 2013, Nature Communications.

[43]  Hans Clevers,et al.  Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis , 2013, The EMBO journal.

[44]  Y Quijano,et al.  Stromal disrupting effects of nab-paclitaxel in pancreatic cancer , 2013, British Journal of Cancer.

[45]  Xiang-Dong Fu,et al.  Regulation of the Hippo-YAP Pathway by G-Protein-Coupled Receptor Signaling , 2012, Cell.

[46]  T. I. Semiglazova,et al.  [Combined effect of gemcitabine and lomustine in mice with intracranial transplanted lymphosarcoma LIO-1]. , 2012, Voprosi onkologii.

[47]  A. Maitra,et al.  Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[48]  P. Spellman,et al.  Subtypes of Pancreatic Ductal Adenocarcinoma and Their Differing Responses to Therapy , 2011, Nature Medicine.

[49]  N. Sasahira,et al.  Inhibition of renin–angiotensin system affects prognosis of advanced pancreatic cancer receiving gemcitabine , 2010, British Journal of Cancer.

[50]  D. Haber,et al.  Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents , 2010, Nature Reviews Cancer.

[51]  Fei Chen,et al.  Structural insights into the YAP and TEAD complex. , 2010, Genes & development.

[52]  H. Yoshiji,et al.  Synergistic inhibitory effect of gemcitabine and angiotensin type-1 receptor blocker, losartan, on murine pancreatic tumor growth via anti-angiogenic activities. , 2009, Oncology reports.

[53]  S. Mousses,et al.  Pancreatic cancer--could it be that simple? A different context of vulnerability. , 2009, Cancer cell.

[54]  H. Friess,et al.  Heme oxygenase-1 and its metabolites affect pancreatic tumor growth in vivo , 2009, Molecular Cancer.

[55]  G. Cairo,et al.  A precious metal: Iron, an essential nutrient for all cells , 2006, Genes & Nutrition.

[56]  C. Heeschen,et al.  Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. , 2007, Cell stem cell.

[57]  T. Ichisaka,et al.  Generation of germline-competent induced pluripotent stem cells , 2007, Nature.

[58]  J. Utikal,et al.  Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. , 2007, Cell stem cell.

[59]  P. Murawa,et al.  Erlotinib Plus Gemcitabine Compared With Gemcitabine Alone in Patients With Advanced Pancreatic Cancer: A Phase III Trial of the National Cancer Institute of Canada Clinical Trials Group , 2023, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[60]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[61]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[62]  L. Kühn,et al.  Role of Ets-1 in transcriptional regulation of transferrin receptor and erythroid differentiation , 2002, Oncogene.

[63]  M. Burnier,et al.  Comparative antihypertensive effects of angiotensin II receptor antagonists. , 1999, Journal of the American Society of Nephrology : JASN.