Classical and strongly classical 2-absorbing second submodules

In this paper, we will introduce the concept of classical (resp. strongly classical) 2-absorbing second submodules of modules over a commutative ring as a generalization of 2-absorbing (resp. strongly 2-absorbing) second submodules and investigate some basic properties of these classes of modules.

[1]  H. Ansari-Toroghy,et al.  Some generalizations of second submodules , 2016, 1609.08054.

[2]  S. S. Pourmortazavi,et al.  On the P-interiors of submodules of Artinian modules , 2016 .

[3]  Hojjat Mostafanasab,et al.  Classical 2-absorbing Submodules of Modules Over Commutative Rings , 2015, 1505.06564.

[4]  M. Alkan,et al.  The dual notion of the prime radical of a module , 2013 .

[5]  H. Ansari-Toroghy,et al.  ON THE DUAL NOTION OF PRIME RADICALS OF SUBMODULES , 2013 .

[6]  H. Ansari-Toroghy,et al.  On the Dual Notion of Prime Submodules , 2012 .

[7]  S. Payrovi,et al.  On 2-Absorbing Submodules , 2012 .

[8]  A. Darani,et al.  2-Absorbing and Weakly 2-Absorbing Submodules , 2012 .

[9]  H. Ansari-Toroghy,et al.  The Dual Notions of Some Generalizations of Prime Submodules , 2011 .

[10]  Ayman Badawi On 2-absorbing ideals of commutative rings , 2007, Bulletin of the Australian Mathematical Society.

[11]  H. Ansari-Toroghy,et al.  THE DUAL NOTION OF MULTIPLICATION MODULES , 2007 .

[12]  Overtoun M. G. Jenda,et al.  Abelian Groups, Rings, Modules, and Homological Algebra , 2006 .

[13]  S. E. Atani,et al.  ON MULTIPLICATION MODULES , 2006 .

[14]  L. Fuchs COMMUTATIVE IDEAL THEORY WITHOUT FINITENESS CONDITIONS: IRREDUCIBILITY IN THE QUOTIENT FIELD , 2005 .

[15]  W. Heinzer,et al.  COMMUTATIVE IDEAL THEORY WITHOUT FINITENESS CONDITIONS: IRREDUCIBILITY IN THE QUOTIENT FIELD , 2005 .

[16]  S. Yassemi The dual notion of prime submodules , 2001 .

[17]  A. Azizi,et al.  ON PRIME SUBMODULES , 1999 .

[18]  S. Yassemi The dual notion of the cyclic modules , 1998 .

[19]  N. Webber,et al.  Association between atherosclerosis and osteoporosis, the role of vitamin D , 2011, Archives of medical science : AMS.

[20]  John Dauns Prime modules. , 1978 .

[21]  H. Butts,et al.  Finite unions of ideals and modules , 1975 .

[22]  L. Fuchs COMMUTATIVE IDEAL THEORY WITHOUT FINITENESS CONDITIONS : , 2006 .