On the Mutational Topology of the Bacterial Genome

By sequencing the genomes of 34 mutation accumulation lines of a mismatch-repair defective strain of Escherichia coli that had undergone a total of 12,750 generations, we identified 1625 spontaneous base-pair substitutions spread across the E. coli genome. These mutations are not distributed at random but, instead, fall into a wave-like spatial pattern that is repeated almost exactly in mirror image in the two separately replicated halves of the bacterial chromosome. The pattern is correlated to genomic features, with mutation densities greatest in regions predicted to have high superhelicity. Superimposed upon this pattern are regional hotspots, some of which are located where replication forks may collide or be blocked. These results suggest that, as they traverse the chromosome, the two replication forks encounter parallel structural features that change the fidelity of DNA replication.

[1]  T Kibota,et al.  Estimate of the genomic mutation rate deleterious to overall fitness in E. coli , 1996 .

[2]  W. Ewens Genetics and analysis of quantitative traits , 1999 .

[3]  L. Boe,et al.  Mechanism for induction of adaptive mutations in Escherichia coli , 1990, Molecular microbiology.

[4]  S. Benzer,et al.  ON THE TOPOGRAPHY OF THE GENETIC FINE STRUCTURE. , 1961, Proceedings of the National Academy of Sciences of the United States of America.

[5]  M. Marinus DNA methylation and mutator genes in Escherichia coli K-12. , 2010, Mutation research.

[6]  B. Schuster-Böckler,et al.  Chromatin organization is a major influence on regional mutation rates in human cancer cells , 2012, Nature.

[7]  D. Halligan,et al.  Spontaneous Mutation Accumulation Studies in Evolutionary Genetics , 2009 .

[8]  Nicholas M. Luscombe,et al.  Evidence of non-random mutation rates suggests an evolutionary risk management strategy , 2012, Nature.

[9]  M. O’Donnell,et al.  The β Sliding Clamp Binds to Multiple Sites within MutL and MutS* , 2006, Journal of Biological Chemistry.

[10]  Howard Ochman,et al.  Neutral mutations and neutral substitutions in bacterial genomes. , 2003, Molecular biology and evolution.

[11]  Broome,et al.  Literature cited , 1924, A Guide to the Carnivores of Central America.

[12]  S Brunak,et al.  A DNA structural atlas for Escherichia coli. , 2000, Journal of molecular biology.

[13]  Bruno Bassetti,et al.  Gene clusters reflecting macrodomain structure respond to nucleoid perturbations. , 2010, Molecular bioSystems.

[14]  M. Radman,et al.  Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S Brunak,et al.  Genome organisation and chromatin structure in Escherichia coli. , 2001, Biochimie.

[16]  R. Lenski,et al.  Microbial genetics: Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation , 2003, Nature Reviews Genetics.

[17]  D. Leach,et al.  A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria . By Jeffrey H. Miller. Cold Spring Harbor Laboratory Press. 1992. 876 pages. Price $95.00. ISBN 0 87969 349 5. , 1993 .

[18]  A. Danchin,et al.  Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths , 2009, PLoS genetics.

[19]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[20]  A. Travers,et al.  An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. , 2001, Nucleic acids research.

[21]  John D. Storey,et al.  Statistical significance for genomewide studies , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  F. Cornet,et al.  Hyperrecombination in the terminus region of the Escherichia coli chromosome: possible relation to nucleoid organization , 1994, Journal of bacteriology.

[23]  Jeremy D. Glasner,et al.  Genome-Scale Analysis of the Uses of the Escherichia coli Genome: Model-Driven Analysis of Heterogeneous Data Sets , 2003, Journal of bacteriology.

[24]  S. Bell,et al.  Termination structures in the Escherichia coli chromosome replication fork trap. , 2009, Journal of molecular biology.

[25]  M. O’Donnell,et al.  The beta sliding clamp binds to multiple sites within MutL and MutS. , 2006, The Journal of biological chemistry.

[26]  H. Niki,et al.  Dynamic organization of chromosomal DNA in Escherichia coli. , 2000, Genes & development.

[27]  Andrew Travers,et al.  Bacterial chromatin. , 2005, Current opinion in genetics & development.

[28]  R. Schaaper,et al.  DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. , 2012, FEMS microbiology reviews.

[29]  C. Ban,et al.  ATP alters the diffusion mechanics of MutS on mismatched DNA. , 2012, Structure.

[30]  R. Schaaper,et al.  Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[31]  M. O’Donnell,et al.  Involvement of the β Clamp in Methyl-directed Mismatch Repair in Vitro* , 2009, The Journal of Biological Chemistry.

[32]  Michael Lynch,et al.  Estimate of the genomic mutation rate deleterious to overall fitness in E. coll , 1996, Nature.

[33]  Haixu Tang,et al.  Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing , 2012, Proceedings of the National Academy of Sciences.

[34]  K. Drlica,et al.  Histone-like protein HU and bacterial DNA topology: suppression of an HU deficiency by gyrase mutations. , 1996, Journal of molecular biology.

[35]  Nigel P. Dyer,et al.  Dynamic Distribution of SeqA Protein across the Chromosome of Escherichia coli K-12 , 2010, mBio.

[36]  J. Rice Mathematical Statistics and Data Analysis , 1988 .

[37]  Arkady B Khodursky,et al.  Spatial patterns of transcriptional activity in the chromosome of Escherichia coli , 2004, Genome Biology.

[38]  G. Fischer,et al.  The mutational profile of the yeast genome is shaped by replication. , 2012, Molecular biology and evolution.

[39]  M. Rossignol,et al.  Macrodomain organization of the Escherichia coli chromosome , 2004, The EMBO journal.

[40]  Santiago Garcia-Vallvé,et al.  HEG-DB: a database of predicted highly expressed genes in prokaryotic complete genomes under translational selection , 2007, Nucleic Acids Res..

[41]  Bernhard O. Palsson,et al.  Long-Range Periodic Patterns in Microbial Genomes Indicate Significant Multi-Scale Chromosomal Organization , 2006, PLoS Comput. Biol..

[42]  Marcel Geertz,et al.  Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome , 2006, EMBO reports.

[43]  A. Travers,et al.  Coordination of genomic structure and transcription by the main bacterial nucleoid‐associated protein HU , 2010, EMBO reports.

[44]  Andrew Travers,et al.  Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle , 2011, Proceedings of the National Academy of Sciences.

[45]  T MUKAI,et al.  THE GENETIC STRUCTURE OF NATURAL POPULATIONS OF DROSOPHILA MELANOGASTER. I. SPONTANEOUS MUTATION RATE OF POLYGENES CONTROLLING VIABILITY. , 1964, Genetics.

[46]  H. Ochman,et al.  Transcription increases multiple spontaneous point mutations in Salmonella enterica. , 2003, Nucleic acids research.