Construction of Isodual Quasi-cyclic Codes over Finite Fields

This paper considers the construction of isodual quasi-cyclic codes. First we prove that two quasi-cyclic codes are permutation equivalent if and only if their constituent codes are equivalent. This gives conditions on the existence of isodual quasi-cyclic codes. Then these conditions are used to obtain isodual quasi-cyclic codes. We also provide a construction for isodual quasi-cyclic codes as the matrix product of isodual codes.

[1]  Chong Jie Lim Quasi-cyclic codes with cyclic constituent codes , 2007, Finite Fields Their Appl..

[2]  Nicolas Sendrier,et al.  Finding the permutation between equivalent linear codes: The support splitting algorithm , 2000, IEEE Trans. Inf. Theory.

[3]  Fernando Hernando,et al.  Decoding of Matrix-Product Codes , 2011, ArXiv.

[4]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[5]  B. R. McDonald,et al.  Finite local rings , 1973 .

[7]  Patrick Solé,et al.  On the algebraic structure of quasi-cyclic codes III: generator theory , 2005, IEEE Transactions on Information Theory.

[8]  K. Guenda,et al.  On the equivalence of cyclic and quasi-cyclic codes over finite fields , 2017 .

[9]  Ayoub Otmani,et al.  Cryptanalysis of Two McEliece Cryptosystems Based on Quasi-Cyclic Codes , 2008, Math. Comput. Sci..

[10]  Graham H. Norton,et al.  Matrix-Product Codes over ?q , 2001, Applicable Algebra in Engineering, Communication and Computing.

[11]  Patrick Solé,et al.  On the Algebraic Structure of Quasi-cyclic Codes II: Chain Rings , 2003, Des. Codes Cryptogr..

[12]  Robert J. McEliece,et al.  A public key cryptosystem based on algebraic coding theory , 1978 .

[13]  T. Aaron Gulliver,et al.  On Isodual Cyclic Codes over Finite Chain Rings , 2017, C2SI.

[14]  T. Aaron Gulliver,et al.  Repeated-Root Isodual Cyclic Codes over Finite Fields , 2015, C2SI.

[15]  Patrick Solé,et al.  On the algebraic structure of quasi-cyclic codes I: Finite fields , 2001, IEEE Trans. Inf. Theory.

[16]  W. Cary Huffman,et al.  Multipliers and Generalized Multipliers of Cyclic Objects and Cyclic Codes , 1993, J. Comb. Theory, Ser. A.

[17]  Masaaki Harada,et al.  Isodual Codes over Z 2 k and Isodual Lattices , 2000 .