Computational Multiscale Methods for Linear Heterogeneous Poroelasticity

We consider a strongly heterogeneous medium saturated by an incompressible viscous fluid as it appears in geomechanical modeling. This poroelasticity problem suffers from rapidly oscillating material parameters, which calls for a thorough numerical treatment. In this paper, we propose a method based on the local orthogonal decomposition technique and motivated by a similar approach used for linear thermoelasticity. Therein, local corrector problems are constructed in line with the static equations, whereas we propose to consider the full system. This allows to benefit from the given saddle point structure and results in two decoupled corrector problems for the displacement and the pressure. We prove the optimal first-order convergence of this method and verify the result by numerical experiments.

[1]  Yalchin Efendiev,et al.  Fast online generalized multiscale finite element method using constraint energy minimization , 2017, J. Comput. Phys..

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[4]  R. Showalter Diffusion in Poro-Elastic Media , 2000 .

[5]  Daniel Peterseim,et al.  A Multiscale Method for Porous Microstructures , 2014, Multiscale Model. Simul..

[6]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[7]  Daniel Peterseim,et al.  Numerical Homogenization of Heterogeneous Fractional Laplacians , 2017, Multiscale Model. Simul..

[8]  D. Peterseim Variational Multiscale Stabilization and the Exponential Decay of Fine-Scale Correctors , 2015, 1505.07611.

[9]  Sébastien Meunier,et al.  A posteriori error analysis of Euler-Galerkin approximations to coupled elliptic-parabolic problems , 2009 .

[10]  P. Henning,et al.  Efficient implementation of the localized orthogonal decomposition method , 2016, Computer Methods in Applied Mechanics and Engineering.

[11]  Ralf Kornhuber,et al.  Numerical Homogenization of Elliptic Multiscale Problems by Subspace Decomposition , 2016, Multiscale Model. Simul..

[12]  Anna Persson,et al.  Multiscale techniques for parabolic equations , 2015, Numerische Mathematik.

[13]  Axel Maalqvist,et al.  A generalized finite element method for linear thermoelasticity , 2016, 1604.00262.

[14]  Daniel Peterseim,et al.  Oversampling for the Multiscale Finite Element Method , 2012, Multiscale Model. Simul..

[15]  Alfonso Caiazzo,et al.  Multiscale Modeling of Weakly Compressible Elastic Materials in the Harmonic Regime and Applications to Microscale Structure Estimation , 2014, Multiscale Model. Simul..

[16]  Ralf Kornhuber,et al.  An analysis of a class of variational multiscale methods based on subspace decomposition , 2016, Math. Comput..

[17]  A. Caiazzo,et al.  A Two-Scale Homogenization Approach for the Estimation of Porosity in Elastic Media , 2016 .

[18]  Maria Vasilyeva,et al.  A generalized multiscale finite element method for poroelasticity problems II: Nonlinear coupling , 2015, J. Comput. Appl. Math..

[19]  Daniel Peterseim,et al.  Computation of Quasi-Local Effective Diffusion Tensors and Connections to the Mathematical Theory of Homogenization , 2016, Multiscale Model. Simul..

[20]  Mark D. Zoback,et al.  Reservoir Geomechanics: Index , 2007 .

[21]  M. Biot General Theory of Three‐Dimensional Consolidation , 1941 .

[22]  Daniel Peterseim,et al.  Robust Numerical Upscaling of Elliptic Multiscale Problems at High Contrast , 2016, Comput. Methods Appl. Math..

[23]  Maria Vasilyeva,et al.  A Generalized Multiscale Finite Element Method for poroelasticity problems I: Linear problems , 2015, J. Comput. Appl. Math..

[24]  Yalchin Efendiev,et al.  Constraint energy minimizing generalized multiscale finite element method in the mixed formulation , 2017, Computational Geosciences.