Structural properties of the creatine-kinase active site studied by chromophoric-reagent labelling.

The environment of the active site of creatine kinase has been investigated by means of three chromophoric reagents: 2-hydroxy-5-nitrobenzyl bromide, 2-methoxy-5-nitrobenzyl bromide and 2-(dansylamino)ethyl monophosphate. 1 The first two reagents are incorporated at the essential thiol groups. The effect of pH on the spectra of the 2-hydroxy-5-nitrobenzyl-labelled creatine kinase suggests that this reagent lies inside the active site near an ionized residue, while the 2-methoxy-5-nitrobenzyl group is apparently exposed to the medium. Conformational changes induced by the binding of different ligands, including nucleotide substrates or anions, produce only perturbations of the 2-hydroxy-5-nitro-benzyl chromophore. 2 The 2-(dansylamino)ethyl monophosphate (which is really an analogue of the nucleotide substrate) interacts with the nucleotide site of creatine and arginine kinases in a relatively hydrophobic environment.

[1]  M. Landon,et al.  Hydrodynamic properties of lobster arginine kinase. , 1972, Biochimica et biophysica acta.

[2]  T. Hiratsuka,et al.  Reaction of 2-bromoacetamide-4-nitrophenol with heavy meromyosin ATPase. , 1972, Biochimica et biophysica acta.

[3]  K. Yagi,et al.  Synthesis of 2-(dansylamino)ethyl triphosphate and its properties as a fluorescent substrate of heavy meromyosin-ATPase. , 1971, Biochimica et biophysica acta.

[4]  L. Pradel,et al.  Studies on the partial exchange and overall reactions catalyzed by native and modified arginine kinase from Homarus vulgaris muscle. , 1971, Biochimica et biophysica acta.

[5]  F. Friedberg,et al.  Sequence of dodecapeptide containing active lysine from chicken ATP: creatine phosphotransferase. , 1971, Biochemical and biophysical research communications.

[6]  J. Figueras Hydrogen bonding, solvent polarity, and the visible spectrum of phenol blue and its derivativatives , 1971 .

[7]  E. Milner-White,et al.  Inhibition of adenosine 5'-triphosphate-creatine phosphotransferase by substrate-anion complexes. Evidence for the transition-state organization of the catalytic site. , 1971, The Biochemical journal.

[8]  B. Vallee,et al.  Extrinsic Cotton effects in complexes of creatine phospholinase with adenine coenzymes. , 1971, Biochemistry.

[9]  N. Thoai,et al.  Spectrophotometric investigations of the interaction of native and chemically modified ATP: guanidinophosphotransferases with their substrates. , 1970, Biochimica et biophysica acta.

[10]  D. Koshland,et al.  The properties of rabbit muscle glyceraldehyde 3-phosphate dehydrogenase labeled with a "reporter group". , 1970, The Journal of biological chemistry.

[11]  N. Thoai,et al.  Détermination des Masses Moléculaires de Diverses Phosphagène Phosphotransferases et du Nombre De Leurs Sous-Unités , 1970 .

[12]  P. Dessen,et al.  Glutamate déshydrogénase. Fixations des coenzymes NAD et NADP et d'autres nucléotides dérivés de l'adénosine-5'-phosphate. , 1969 .

[13]  J. Taylor,et al.  Magnetic resonance studies of spin-labeled creatine kinase system and interaction of two paramagnetic probes. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[14]  N. Thoai,et al.  Étude de la conformation de diverses phosphagène phosphotransférases par dispersion optique rotatoire , 1969 .

[15]  G. Hammes,et al.  Relaxation spectra of adenosine triphosphate-creatine phosphotransferase. , 1969, Biochemistry.

[16]  N. Thoai,et al.  Interaction des ATP:Guanidine phosphotransférases avec leurs substrats, étudiée par spectrophotometrie différentielle , 1968 .

[17]  L. Pradel,et al.  Site actif des ATP: Guanidine phosphotransférases: II. Mise en évidence de résidus histidine essentiels au moyen du pyrocarbonate d'éthyle , 1968 .

[18]  L. Pradel,et al.  Site actif des ATP: Guanidine phosphotransférases: I. Réaction des groupes ε-NH2 lysine essentiels avec le i-diméthylaminonaphtalène-5-sulfochlorure , 1968 .

[19]  L. Cunningham,et al.  Creatine kinase. The relationship of trypsin susceptibility to substrate binding. , 1968, Biochemistry.

[20]  D. Koshland,et al.  The environment of a reporter group at the active site of chymotrypsin. , 1967, Journal of the American Chemical Society.

[21]  D. Koshland,et al.  The probing of active sites by similar report groups. The preparation of 4-bromoacetamido-2-nitrophenol. , 1967, Biochimica et biophysica acta.

[22]  N. Thoai,et al.  Comparaison des groupes SH reactifs des ATP:guanidines phosphotransferases , 1967 .

[23]  W. Gray [12] Dansyl chloride procedure , 1967 .

[24]  J. Morrison,et al.  The reaction of nucleotide substrate analogues with denosine triphosphate-creatine phosphotransferase. , 1966, The Journal of biological chemistry.

[25]  N. Thoai,et al.  Composition en acides amines de l'ATP: l-arginine phosphotransferase cristallisee , 1966 .

[26]  W. O'Sullivan,et al.  Magnetic resonance investigations of the metal complexes formed in the manganese-activated creatine kinase reaction. , 1966, The Journal of biological chemistry.

[27]  W. O'Sullivan,et al.  Nucleotide specificity and conformation of the active site of creatine kinase. Magnetic resonance and sulfhydryl reactivity studies. , 1966, The Journal of biological chemistry.

[28]  J. Kallos,et al.  Study of the polarity of the active site of chymotrypsin. , 1966, Biochemistry.

[29]  N. Lui,et al.  Cooperative effects of substrates and substrate analogs on the conformation of creatine phosphokinase. , 1966, Biochemistry.

[30]  Koshland De,et al.  A HIGHLY REACTIVE COLORED REAGENT WITH SELECTIVITY FOR THE TRYPTOPHAN RESIDUE IN PROTEINS. 2-HYDROXY-5-NITROBENZYL BROMIDE. , 1965 .

[31]  D. Koshland,et al.  ENVIRONMENTALLY SENSITIVE PROTEIN REAGENTS. 2-METHOXY-5-NITROBENZYL BROMIDE. , 1965, The Journal of biological chemistry.

[32]  D. Watts STUDIES ON THE MECHANISM OF ACTION OF ADENOSINE 5'-TRIPHOSPHATE-CREATINE PHOSPHOTRANSFERASE. INHIBITION BY MANGANESE IONS AND BY P-NITROPHENYL ACETATE. , 1963, The Biochemical journal.

[33]  A. Parker,et al.  772. Solvation of ions. Part IV. The electronic absorption spectra of some Group VI anions and their conjugate acids in protic and dipolar aprotic solvents , 1963 .

[34]  B. Rabin,et al.  A study of the 'reactive' sulphydryl groups of adenosine 5'-triphosphate-creatine phosphotransferase. , 1962, The Biochemical journal.

[35]  E. Blout,et al.  New Cotton Effects in Polypeptides and Proteins , 1962 .

[36]  E. Noltmann,et al.  Studies on adenosine triphosphate transphosphorylases. III. Inhibition reactions. , 1962, The Journal of biological chemistry.

[37]  B. Lindberg,et al.  Displacements at Divalent Group VI Elements. , 1962 .

[38]  F. Friedberg,et al.  Some physicochemical properties of creatinekinase. , 1960, The Journal of biological chemistry.

[39]  M. Morales,et al.  The enzymatic activity and inhibition of adenosine 5'-triphosphate-creatine transphosphorylase. , 1960, The Journal of biological chemistry.

[40]  G. Ellman,et al.  Tissue sulfhydryl groups. , 1959, Archives of biochemistry and biophysics.

[41]  A. Stockell The binding of diphosphopyridine nucleotide by yeast glyceraldehyde-3-phosphate dehydrogenase. , 1959, The Journal of biological chemistry.

[42]  E. Kosower The Effect of Solvent on Spectra. I. A New Empirical Measure of Solvent Polarity: Z-Values , 1958 .

[43]  K. Laidler The influence of pH on the rates of enzyme reactions. Part 3.—Analysis of experimental results for various enzyme systems , 1955 .

[44]  H. Lardy,et al.  Adenosinetriphosphate-creatine transphosphorylase. II. Homogeneity and physicochemical properties. , 1954, The Journal of biological chemistry.

[45]  H. Lardy,et al.  Adenosinetriphosphate-creatine transphosphorylase. I. Isolation of the crystalline enzyme from rabbit muscle. , 1954, The Journal of biological chemistry.

[46]  Klotz Im,et al.  The application of the law of mass action to binding by proteins; interactions with calcium. , 1946 .