Lyα Halos around [O iii]-selected Galaxies in HETDEX

We present extended Lyα emission out to 800 kpc of 1034 [O iii]-selected galaxies at redshifts 1.9 < z < 2.35 using the Hobby–Eberly Telescope Dark Energy Experiment. The locations and redshifts of the galaxies are taken from the 3D-HST survey. The median-stacked surface brightness profile of the Lyα emission of the [O iii]-selected galaxies agrees well with that of 968 bright Lyα-emitting galaxies (LAEs) at r > 40 kpc from the galaxy centers. The surface brightness in the inner parts (r < 10 kpc) around the [O iii]-selected galaxies, however, is 10 times fainter than that of the LAEs. Our results are consistent with the notion that photons dominating the outer regions of the Lyα halos are not produced in the central galaxies but originate outside of them.

[1]  L. Wisotzki,et al.  Surface Brightness Profile of Lyman-α Halos out to 320 kpc in HETDEX , 2022, The Astrophysical Journal.

[2]  R. Pelló,et al.  The MUSE eXtremely Deep Field: Individual detections of Lyalpha haloes around rest-frame UV-selected galaxies at z 2.9-4.4 , 2022, Astronomy & Astrophysics.

[3]  K. Shimasaku,et al.  SILVERRUSH. XII. Intensity Mapping for Lyα Emission Extending over 100–1000 Comoving Kpc around z ∼ 2−7 LAEs with Subaru HSC-SSP and CHORUS Data , 2021, The Astrophysical Journal.

[4]  A. Coil,et al.  The Effects of Stellar Population and Gas Covering Fraction on the Emergent Lyα Emission of High-redshift Galaxies , 2021, The Astrophysical Journal.

[5]  Brianna P. Thomas,et al.  The Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) Survey Design, Reductions, and Detections , 2021, The Astrophysical Journal.

[6]  L. Ramsey,et al.  The HETDEX Instrumentation: Hobby–Eberly Telescope Wide-field Upgrade and VIRUS , 2021, The Astronomical Journal.

[7]  R. Ciardullo,et al.  The z ∼ 2 [O iii] Luminosity Function of Grism-selected Emission-line Galaxies , 2021, The Astrophysical Journal.

[8]  L. Wisotzki,et al.  The HETDEX Survey: The Lyα Escape Fraction from 3D-HST Emission-Line Galaxies at z ∼ 2 , 2021, The Astrophysical Journal.

[9]  L. Hernquist,et al.  The physical origins and dominant emission mechanisms of Lyman alpha haloes: results from the TNG50 simulation in comparison to MUSE observations , 2020, Monthly Notices of the Royal Astronomical Society.

[10]  R. Ciardullo,et al.  MCSED: A Flexible Spectral Energy Distribution Fitting Code and Its Application to z ∼ 2 Emission-line Galaxies , 2020, The Astrophysical Journal.

[11]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[12]  G. Östlin,et al.  The Lyman Alpha Reference Sample. X. Predicting Lyα Output from Star-forming Galaxies Using Multivariate Regression , 2020, The Astrophysical Journal.

[13]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[14]  C. Faucher-Giguère A cosmic UV/X-ray background model update , 2019, Monthly Notices of the Royal Astronomical Society.

[15]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[16]  A. Strom,et al.  Predicting Lyα Emission from Galaxies via Empirical Markers of Production and Escape in the KBSS , 2019, The Astrophysical Journal.

[17]  R. Ciardullo,et al.  Galaxies of the z ∼ 2 Universe. I. Grism-selected Rest-frame Optical Emission-line Galaxies , 2019, The Astrophysical Journal.

[18]  Andrew P. Hearin,et al.  UniverseMachine: The correlation between galaxy growth and dark matter halo assembly from z = 0−10 , 2018, Monthly Notices of the Royal Astronomical Society.

[19]  et al,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[20]  J. Xavier Prochaska,et al.  Lyman-alpha as an Astrophysical and Cosmological Tool , 2019, Saas-Fee Advanced Course.

[21]  B. Guiderdoni,et al.  Nearly all the sky is covered by Lyman-α emission around high-redshift galaxies , 2018, Nature.

[22]  B. Robertson,et al.  The mean ultraviolet spectrum of a representative sample of faint z ~ 3 Lyman alpha emitters , 2018, 1801.03085.

[23]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[24]  J. Brinchmann,et al.  The MUSE Hubble Ultra Deep Field Survey - VIII. Extended Lyman-α haloes around high-z star-forming galaxies , 2017, 1710.10271.

[25]  M. Trenti,et al.  Small-scale Intensity Mapping: Extended Lyα, Hα, and Continuum Emission as a Probe of Halo Star Formation in High-redshift Galaxies , 2017, 1703.02593.

[26]  N. Kashikawa,et al.  Direct evidence for Ly$\boldsymbol{\alpha }$ depletion in the protocluster core , 2017, 1702.00100.

[27]  D. Clements,et al.  The star formation rate density from z = 1 to 6 , 2016, 1605.03937.

[28]  E. Emsellem,et al.  Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE , 2015, 1509.05143.

[29]  Mattia Fumagalli,et al.  THE 3D-HST SURVEY: HUBBLE SPACE TELESCOPE WFC3/G141 GRISM SPECTRA, REDSHIFTS, AND EMISSION LINE MEASUREMENTS FOR ∼100,000 GALAXIES , 2015, 1510.02106.

[30]  P. W. Wang,et al.  The VIMOS Ultra Deep Survey: Lyα emission and stellar populations of star-forming galaxies at 2 < z < 2.5 , 2015, 1503.01753.

[31]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[32]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[33]  A. Loeb,et al.  Lyα blobs as an observational signature of cold accretion streams into galaxies , 2009, 0902.2999.

[34]  A. Maselli,et al.  3D Lyalpha radiation transfer. I. Understanding Lyalpha line profile morphologies , 2006, astro-ph/0608075.

[35]  Z. Haiman,et al.  Lyα Radiation from Collapsing Protogalaxies. I. Characteristics of the Emergent Spectrum , 2005, astro-ph/0510407.

[36]  S. Lilly,et al.  Fluorescent Lyα Emission from the High-Redshift Intergalactic Medium , 2005, astro-ph/0504015.

[37]  E. Quataert,et al.  Lyα Cooling Radiation from High-Redshift Halos , 2000, astro-ph/0003366.

[38]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[39]  G. Bryan,et al.  Statistical Properties of X-Ray Clusters: Analytic and Numerical Comparisons , 1997, astro-ph/9710107.

[40]  D. Weinberg,et al.  Imaging the Lyman-alpha Forest , 1995, astro-ph/9512138.