Structure–Property–Function Relationships in Nanoscale Oxide Sensors: A Case Study Based on Zinc Oxide

Chemical sensing on oxide sensors is a complex phenomenon involving catalytic activity as well as electronic properties. Thus, the properties of oxide sensors are highly sensitive towards structural changes. Effects like surface area, grain size, and, in addition, the occurrence of defects give separate contributions to the current. Structure-property-function relationships can be elucidated using a combination of state-of-the-art analytical techniques. It is shown, that impurity atoms in the oxide lattice influence the performance of ZnO sensors more strongly than the other factors.

[1]  Frank Einar Kruis,et al.  Fully automated, gas sensing, and electronic parameter measurement setup for miniaturized nanoparticle gas sensors , 2003 .

[2]  Chenglu Lin,et al.  Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors , 2004 .

[3]  M. Driess,et al.  Consecutive fragmentations of the cubane-like zinc cluster [CH3Zn(O-i-C3H7)]4 upon electron ionization. , 2005, Physical chemistry chemical physics : PCCP.

[4]  Qingyi Pan,et al.  Grain size control and gas sensing properties of ZnO gas sensor , 2000 .

[5]  Ulrich Simon,et al.  Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? , 2006, Small.

[6]  Kengo Shimanoe,et al.  Formulation of gas diffusion dynamics for thin film semiconductor gas sensor based on simple reaction–diffusion equation , 2003 .

[7]  A. Hervé,et al.  Optically detected magnetic resonance and optically detected ENDOR of shallow indium donors in ZnO , 1982 .

[8]  C. L. Jia,et al.  Atomic-Resolution Imaging of Oxygen in Perovskite Ceramics , 2003, Science.

[9]  M. Driess,et al.  Molecular encoding at the nanoscale: from complex cubes to bimetallic oxides. , 2005, Angewandte Chemie.

[10]  F. Kruis,et al.  Tailored nanoparticle films from monosized tin oxide nanocrystals: Particle synthesis, film formation, and size-dependent gas-sensing properties , 2003 .

[11]  B. Raveau Transition metal oxides: Promising functional materials , 2005 .

[12]  Meilin Liu,et al.  A highly sensitive and fast-responding SnO2 sensor fabricated by combustion chemical vapor deposition , 2005 .

[13]  Karin Fink,et al.  Zinc Oxide Nanoparticles with Defects , 2005 .

[14]  M. Muhler,et al.  Methanol synthesis over ZnO: A structure-sensitive reaction? , 2003 .

[15]  Bernd Kabius,et al.  Electron microscopy image enhanced , 1998, Nature.

[16]  T. Lian,et al.  Electron Injection Dynamics from Ru Polypyridyl Complexes to ZnO Nanocrystalline Thin Films , 2003 .

[17]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[18]  C. Rao,et al.  Synthesis of complex metal oxides by novel routes , 1987 .

[19]  F. Kruis,et al.  Chemical vapor synthesis of size-selected zinc oxide nanoparticles. , 2005, Small.

[20]  Larry E. Halliburton,et al.  Role of copper in the green luminescence from ZnO crystals , 2002 .

[21]  Hong‐Ming Lin,et al.  Electrode effects on gas sensing properties of nanocrystalline zinc oxide , 1998 .

[22]  Jiaqiang Xu,et al.  Gas sensing properties of ZnO nanorods prepared by hydrothermal method , 2005 .

[23]  Jürgen Christen,et al.  Bound exciton and donor–acceptor pair recombinations in ZnO , 2004 .

[24]  E. Monroy,et al.  Wide-bandgap semiconductor ultraviolet photodetectors , 2003 .

[25]  Jiaqiang Xu,et al.  Sensing characteristics of double layer film of ZnO , 2000 .

[26]  B. Costello,et al.  A study of the catalytic and vapour-sensing properties of zinc oxide and tin dioxide in relation to 1-butanol and dimethyldisulphide , 1999 .

[27]  P. P. Sahay,et al.  Sprayed ZnO thin films for ethanol sensors , 2005 .

[28]  David C. Look,et al.  Recent Advances in ZnO Materials and Devices , 2001 .

[29]  S. Basu,et al.  Improved zinc oxide film for gas sensor applications , 2002 .

[30]  David C. Look,et al.  P‐type doping and devices based on ZnO , 2004 .

[31]  S. Polarz,et al.  Mesosynthesis of ZnO-silica composites for methanol nanocatalysis. , 2005, Journal of the American Chemical Society.

[32]  Kengo Shimanoe,et al.  Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor , 2001 .

[33]  N. Barsan,et al.  Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report , 1999 .

[34]  G. Heiland,et al.  Zum Einfluß von adsorbiertem Sauerstoff auf die elektrische Leitfähigkeit von Zinkoxydkristallen , 1954 .

[35]  G. Korotcenkov Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches , 2005 .

[36]  F. Kruis,et al.  First preparation of nanocrystalline zinc silicate by chemical vapor synthesis using an organometallic single-source precursor. , 2004, Chemistry.

[37]  Lifeng Dong,et al.  Gas sensing properties of nano-ZnO prepared by arc plasma method , 1997 .

[38]  Partha Mitra,et al.  ZnO thin film sensor , 1998 .

[39]  G. Shiu,et al.  D-Matter , 2003, hep-ph/0311228.

[40]  F. Hickernell Piezoelectric Semiconductor Acoustic Delay Lines , 1969 .

[41]  S. R. C. Vivekchand,et al.  Hydrogen and ethanol sensors based on ZnO nanorods, nanowires and nanotubes , 2006 .

[42]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[43]  Mercedes Martínez,et al.  Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells , 1997 .

[44]  M. Muhler,et al.  Über den Einfluss von Sauerstoffdefektstellen auf die katalytische Aktivität von Zinkoxid , 2006 .

[45]  Anders Hagfeldt,et al.  Studies of the adsorption process of Ru complexes in nanoporous ZnO electrodes , 2000 .

[46]  J. Schneider,et al.  Notizen: Paramagnetische Resonanz von Donatoren in Zinkoxyd , 1961 .