Moving Object Detection by Detecting Contiguous Outliers in the Low-Rank Representation

Object detection is a fundamental step for automated video analysis in many vision applications. Object detection in a video is usually performed by object detectors or background subtraction techniques. Often, an object detector requires manually labeled examples to train a binary classifier, while background subtraction needs a training sequence that contains no objects to build a background model. To automate the analysis, object detection without a separate training phase becomes a critical task. People have tried to tackle this task by using motion information. But existing motion-based methods are usually limited when coping with complex scenarios such as nonrigid motion and dynamic background. In this paper, we show that the above challenges can be addressed in a unified framework named DEtecting Contiguous Outliers in the LOw-rank Representation (DECOLOR). This formulation integrates object detection and background learning into a single process of optimization, which can be solved by an alternating algorithm efficiently. We explain the relations between DECOLOR and other sparsity-based methods. Experiments on both simulated data and real sequences demonstrate that DECOLOR outperforms the state-of-the-art approaches and it can work effectively on a wide range of complex scenarios.

[1]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[2]  Volkan Cevher,et al.  Sparse Signal Recovery Using Markov Random Fields , 2008, NIPS.

[3]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[4]  Alex Pentland,et al.  A Bayesian Computer Vision System for Modeling Human Interactions , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[7]  Dmitry Chetverikov,et al.  Dynamic Texture Detection Based on Motion Analysis , 2009, International Journal of Computer Vision.

[8]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[9]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[10]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Stuart J. Russell,et al.  Image Segmentation in Video Sequences: A Probabilistic Approach , 1997, UAI.

[12]  HiltonAdrian,et al.  A survey of advances in vision-based human motion capture and analysis , 2006 .

[13]  Hans-Peter Kriegel,et al.  Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..

[14]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[15]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[16]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[17]  Junzhou Huang,et al.  Learning with dynamic group sparsity , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[18]  John Wright,et al.  RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Daniel Cremers,et al.  Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation , 2005, International Journal of Computer Vision.

[20]  Nikos Paragios,et al.  Motion-based background subtraction using adaptive kernel density estimation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[21]  Steven S. Beauchemin,et al.  The computation of optical flow , 1995, CSUR.

[22]  Jitendra Malik,et al.  Object Segmentation by Long Term Analysis of Point Trajectories , 2010, ECCV.

[23]  Hossein Mobahi,et al.  Face recognition with contiguous occlusion using markov random fields , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[24]  Vinod Nair,et al.  An unsupervised, online learning framework for moving object detection , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[25]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[26]  Nikos Paragios,et al.  Background modeling and subtraction of dynamic scenes , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[27]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[28]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[29]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[30]  Sidney S. Fels,et al.  Evaluation of Background Subtraction Algorithms with Post-Processing , 2008, 2008 IEEE Fifth International Conference on Advanced Video and Signal Based Surveillance.

[31]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[32]  Nahum Kiryati,et al.  Piecewise-Smooth Dense Optical Flow via Level Sets , 2006, International Journal of Computer Vision.

[33]  Daniel Cremers,et al.  Dynamic texture segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[34]  Paul A. Viola,et al.  Detecting Pedestrians Using Patterns of Motion and Appearance , 2005, International Journal of Computer Vision.

[35]  T. Hastie,et al.  SparseNet: Coordinate Descent With Nonconvex Penalties , 2011, Journal of the American Statistical Association.

[36]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[37]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[38]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[39]  Takeo Kanade,et al.  Robust L/sub 1/ norm factorization in the presence of outliers and missing data by alternative convex programming , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[40]  Julien Mairal,et al.  Network Flow Algorithms for Structured Sparsity , 2010, NIPS.

[41]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[42]  LiLiyuan,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004 .

[43]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[44]  Adrian Hilton,et al.  A survey of advances in vision-based human motion capture and analysis , 2006, Comput. Vis. Image Underst..

[45]  Nuno Vasconcelos,et al.  Layered Dynamic Textures , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  P. Zhao,et al.  The composite absolute penalties family for grouped and hierarchical variable selection , 2009, 0909.0411.

[47]  Ming-Hsuan Yang,et al.  Robust Object Tracking with Online Multiple Instance Learning , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[49]  Thomas Brox,et al.  Variational Motion Segmentation with Level Sets , 2006, ECCV.

[50]  N. Meinshausen,et al.  LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.

[51]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[52]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  Jianqing Fan,et al.  Nonconcave Penalized Likelihood With NP-Dimensionality , 2009, IEEE Transactions on Information Theory.

[54]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[55]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[56]  René Vidal,et al.  A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[57]  Thomas Brox,et al.  Object segmentation in video: A hierarchical variational approach for turning point trajectories into dense regions , 2011, 2011 International Conference on Computer Vision.

[58]  David Suter,et al.  A Novel Robust Statistical Method for Background Initialization and Visual Surveillance , 2006, ACCV.

[59]  Yiyuan She,et al.  Outlier Detection Using Nonconvex Penalized Regression , 2010, ArXiv.

[60]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[61]  Anil K. Jain,et al.  A background model initialization algorithm for video surveillance , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[62]  Horst Bischof,et al.  On-line Boosting and Vision , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[63]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[64]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[65]  Takeo Kanade,et al.  Background Subtraction for Freely Moving Cameras , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[66]  Jean-Marc Odobez,et al.  Robust Multiresolution Estimation of Parametric Motion Models , 1995, J. Vis. Commun. Image Represent..

[67]  Nikos Paragios,et al.  Motion-based background subtraction using adaptive kernel density estimation , 2004, CVPR 2004.

[68]  Michael J. Black,et al.  A Framework for Robust Subspace Learning , 2003, International Journal of Computer Vision.

[69]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[70]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[71]  Stan Z. Li,et al.  Markov Random Field Modeling in Image Analysis , 2001, Computer Science Workbench.

[72]  Andrew Blake,et al.  A Probabilistic Background Model for Tracking , 2000, ECCV.

[73]  Stan Sclaroff,et al.  Segmenting foreground objects from a dynamic textured background via a robust Kalman filter , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[74]  René Vidal,et al.  A Unified Algebraic Approach to 2-D and 3-D Motion Segmentation , 2004, ECCV.