Crops and their wild progenitors recruit beneficial and detrimental soil biota in 1 opposing ways 2 3

1 Crops and their wild progenitors recruit beneficial and detrimental soil biota in 1 opposing ways 2 3 Nieves Martín-Robles, Pablo García-Palacios, Marta Rodríguez, Daniel Rico, Rocío 4 Vigo, Sara Sánchez-Moreno, Gerlinde B. De Deyn, Rubén Milla 5 6 1 Departamento de Biología y Geología, Área de Biodiversidad y Conservación, Escuela 7 Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, 8 c/Tulipán s/n, Móstoles 28933, Spain; 9 2 Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 10 c/Serrano 115 dpdo., 28006, Madrid, Spain; 11 3 Departamento de Medio Ambiente y Agronomía National Institute for Agriculture and 12 Food Research and Technology, Ctra. de la Coruña km 7.5, Madrid 28040, Spain; 13 4 Soil Biology and Biological Soil Quality, Wageningen University and Research, PO 14 Box 47, 6700 AA, Wageningen, The Netherlands. 15 16 *Author for correspondence: 17 Nieves Martín-Robles, 18 Tel: +34 914888288 19 Email: nievesmartin@msn.com 20 21 Total word count (excluding summary and legends) No. of figures: 4 (Fig 1-4 in colour)

[1]  Ciska G F Veen Plant-soil feedbacks , 2020 .

[2]  H. Poorter,et al.  Root traits of herbaceous crops: Pre‐adaptation to cultivation or evolution under domestication? , 2018, Functional Ecology.

[3]  M. Rillig,et al.  Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. , 2018, The New phytologist.

[4]  T. M. Bezemer,et al.  Plant-Soil Feedback: Bridging Natural and Agricultural Sciences. , 2017, Trends in ecology & evolution.

[5]  Kimberley J. Simpson,et al.  Still armed after domestication? Impacts of domestication and agronomic selection on silicon defences in cereals , 2017 .

[6]  Shixiao Yu,et al.  Soil biota suppress positive plant diversity effects on productivity at high but not low soil fertility , 2017 .

[7]  M. Bosse,et al.  Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits , 2017, The ISME Journal.

[8]  R. Bardgett Plant trait-based approaches for interrogating belowground function , 2017, Biology and Environment: Proceedings of the Royal Irish Academy.

[9]  E. Laliberté Below-ground frontiers in trait-based plant ecology. , 2017, The New phytologist.

[10]  T. Bell,et al.  Microbes in the Anthropocene: spillover of agriculturally selected bacteria and their impact on natural ecosystems , 2016, Proceedings of the Royal Society B: Biological Sciences.

[11]  Jennifer E. Schmidt,et al.  Using Ancient Traits to Convert Soil Health into Crop Yield: Impact of Selection on Maize Root and Rhizosphere Function , 2016, Front. Plant Sci..

[12]  C. Pieterse,et al.  The Soil-Borne Supremacy. , 2016, Trends in plant science.

[13]  Russell V. Lenth,et al.  Least-Squares Means: The R Package lsmeans , 2016 .

[14]  F. L. Pfleger,et al.  Vesicular‐Arbuscular Mycorrhizae and Cultural Stresses , 2015 .

[15]  C. Violle,et al.  Plant domestication through an ecological lens. , 2015, Trends in ecology & evolution.

[16]  M. Rillig,et al.  Mycorrhizal fungi associated with high soil N:P ratios are more likely to be lost upon conversion from grasslands to arable agriculture , 2015 .

[17]  R. Mendes,et al.  Impact of plant domestication on rhizosphere microbiome assembly and functions , 2015, Plant Molecular Biology.

[18]  M. Perring,et al.  Peeking into the black box: a trait-based approach to predicting plant-soil feedback. , 2015, The New phytologist.

[19]  H. Lambers,et al.  Phosphorus limitation, soil-borne pathogens and the coexistence of plant species in hyperdiverse forests and shrublands. , 2015, The New phytologist.

[20]  F. Menalled,et al.  Impact of species identity and phylogenetic relatedness on biologically-mediated plant-soil feedbacks in a low and a high intensity agroecosystem , 2015, Plant and Soil.

[21]  K. Heath,et al.  Long‐term nitrogen addition causes the evolution of less‐cooperative mutualists , 2015, Evolution; international journal of organic evolution.

[22]  M. Zobel,et al.  Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. , 2014, FEMS microbiology ecology.

[23]  Marc T. J. Johnson,et al.  The impact of domestication on resistance to two generalist herbivores across 29 independent domestication events. , 2014, The New phytologist.

[24]  F. Stuart Chapin,et al.  Shifts and disruptions in resource-use trait syndromes during the evolution of herbaceous crops , 2014, Proceedings of the Royal Society B: Biological Sciences.

[25]  D. Flynn,et al.  Selection for niche differentiation in plant communities increases biodiversity effects , 2014, Nature.

[26]  I. Hale,et al.  A Vavilovian approach to discovering crop-associated microbes with potential to enhance plant immunity , 2014, Front. Plant Sci..

[27]  G. Berg,et al.  Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima—ancestor of all beet crops—and modern sugar beets , 2014, Front. Microbiol..

[28]  Paul C. Johnson Extension of Nakagawa & Schielzeth's R2GLMM to random slopes models , 2014, Methods in ecology and evolution.

[29]  E. Kiers,et al.  Inclusive fitness in agriculture , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  J. Fosu‐Nyarko,et al.  Molecular biology of root lesion nematodes (Pratylenchusspp.) and their interaction with host plants , 2014 .

[31]  Rob Knight,et al.  Reconstructing the Microbial Diversity and Function of Pre-Agricultural Tallgrass Prairie Soils in the United States , 2013, Science.

[32]  M. Delgado‐Baquerizo,et al.  Side-effects of plant domestication: ecosystem impacts of changes in litter quality. , 2013, The New phytologist.

[33]  Cameron Wagg,et al.  Linking soil biodiversity and agricultural soil management , 2012 .

[34]  M. Hart,et al.  Mutualism breakdown in breadfruit domestication , 2012, Proceedings of the Royal Society B: Biological Sciences.

[35]  S. Raghu Resource Strategies of Wild Plants , 2011 .

[36]  M. Mescher,et al.  Tracing the history of plant traits under domestication in cranberries: potential consequences on anti-herbivore defences. , 2011, Journal of experimental botany.

[37]  E. Verbruggen,et al.  Evolutionary ecology of mycorrhizal functional diversity in agricultural systems , 2010, Evolutionary applications.

[38]  David A. Bohan,et al.  Crop domestication and the disruption of species interactions , 2010 .

[39]  J. P. Thompson,et al.  Resistance to the root-lesion nematode Pratylenchus thornei of Iranian landrace wheat , 2009, Australasian Plant Pathology.

[40]  M. Mazzola,et al.  Novel approaches in plant breeding for rhizosphere-related traits , 2009, Plant and Soil.

[41]  A. Zuur,et al.  Mixed Effects Models and Extensions in Ecology with R , 2009 .

[42]  K. Treseder Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. , 2008, Ecology letters.

[43]  M. V. D. van der Heijden,et al.  The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. , 2008, Ecology letters.

[44]  E. Veenendaal,et al.  Soil feedback of exotic savanna grass relates to pathogen absence and mycorrhizal selectivity. , 2007, Ecology.

[45]  Yolanda H. Chen,et al.  Crop domestication creates a refuge from parasitism for a native moth , 2006 .

[46]  D. Wardle,et al.  Ecological Linkages Between Aboveground and Belowground Biota , 2004, Science.

[47]  K. Tawaraya Arbuscular mycorrhizal dependency of different plant species and cultivars , 2003 .

[48]  T. Boller,et al.  Impact of Land Use Intensity on the Species Diversity of Arbuscular Mycorrhizal Fungi in Agroecosystems of Central Europe , 2003, Applied and Environmental Microbiology.

[49]  J. Bever,et al.  Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. , 2003, The New phytologist.

[50]  F. A. Smith,et al.  Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars , 2001, Plant and Soil.

[51]  M. Hungria,et al.  Response of field-grown bean (Phaseolus vulgaris L.) to Rhizobium inoculation and nitrogen fertilization in two Cerrados soils , 2000, Biology and Fertility of Soils.

[52]  T. Widmer,et al.  Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops , 2000 .

[53]  T. Boller,et al.  Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation , 2000, Biology and Fertility of Soils.

[54]  S. Hartley,et al.  Disarmed by domestication? Induced responses to browsing in wild and cultivated olive , 2000, Oecologia.

[55]  A. Fitter,et al.  Ploughing up the wood-wide web? , 1998, Nature.

[56]  R. Dirzo,et al.  Effects of life history, domestication and agronomic selection on plant defence against insects: Evidence from maizes and wild relatives , 1997, Evolutionary Ecology.

[57]  J. Graham,et al.  Host genotype and the formation and function of VA mycorrhizae , 1994, Plant and Soil.

[58]  N. Johnson Can Fertilization of Soil Select Less Mutualistic Mycorrhizae? , 1993, Ecological applications : a publication of the Ecological Society of America.

[59]  D. Herms,et al.  The Dilemma of Plants: To Grow or Defend , 1992, The Quarterly Review of Biology.

[60]  J. Hancock Plant Evolution and the Origin of Crop Species , 1992 .

[61]  Manuela Giovannetti,et al.  AN EVALUATION OF TECHNIQUES FOR MEASURING VESICULAR ARBUSCULAR MYCORRHIZAL INFECTION IN ROOTS , 1980 .

[62]  C. Sauer Agricultural origins and dispersals , 1953 .

[63]  J. Kattge,et al.  Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food , 2019 .

[64]  C. Violle,et al.  Shifts in plant functional strategies over the course of wheat domestication , 2018 .

[65]  Jun Zhu,et al.  Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts. , 2016, Trends in microbiology.

[66]  Márton Szoboszlay,et al.  Comparison of root system architecture and rhizosphere microbial communities of Balsas teosinte and domesticated corn cultivars , 2015 .

[67]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[68]  J. Maron,et al.  Soil fungal pathogens and the relationship between plant diversity and productivity. , 2011, Ecology letters.

[69]  E. Siemann,et al.  The Impacts of Fertilization on Mycorrhizal Production and Investment in Western Gulf Coast Grasslands , 2010 .

[70]  E. Bedel Relationship between , 2009 .

[71]  K. Davies,et al.  Nematode Interactions in Nature: Models for Sustainable Control of Nematode Pests of Crop Plants? , 2006 .

[72]  D. Trudgill,et al.  Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. , 2001, Annual review of phytopathology.

[73]  P. Roberts,et al.  Reaction of Wild and Domesticated Triticum and Aegilops Species To Root-Knot Nematodes (Meloidogyne) , 1982 .

[74]  S. E. Smith Mycorrhizal fungi. , 1974, CRC critical reviews in microbiology.