Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface

Visible, circularly polarised light can be transformed into light-carrying orbital angular momentum by a plasmonic metasurface. That is the finding of Ebrahim Karimi and co-workers at the University of Ottawa in Canada and the University of Rochester in the United States. Light with orbital angular momentum (owing to a twisted phase front) is traditionally generated using specially designed optical elements such as spatial light modulator, cylindrical lens mode converters and q-plate. The researchers have now shown that a plasmonic metasurface comprising an array of nano-antennas can couple spin-to-orbital angular momentum at thickness much smaller than the wavelength of the light with an efficiency of around 3%. The conversion takes place due to the birefringence present in the nanostructure array. This approach could yield ultrathin generators of visible light with orbital angular momentum, for potential applications in spectroscopy, imaging, sensing and quantum information.

[1]  G. Swartzlander,et al.  Optical vortex coronagraph. , 2005, Optics letters.

[2]  Influence of generalized focusing of few-cycle Gaussian pulses in attosecond pulse generation. , 2013, Optics express.

[3]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[4]  D. Lynch,et al.  Handbook of Optical Constants of Solids , 1985 .

[5]  N. Litchinitser Structured Light Meets Structured Matter , 2012, Science.

[6]  L. Marrucci,et al.  Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. , 2006, Physical review letters.

[7]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[8]  Stephen M. Barnett,et al.  Optical Angular Momentum , 2003 .

[9]  S. Hell Far-Field Optical Nanoscopy , 2007, Science.

[10]  Ebrahim Karimi,et al.  Hypergeometric-Gaussian modes. , 2007, Optics letters.

[11]  L. Dal Negro,et al.  Control of optical orbital angular momentum by Vogel spiral arrays of metallic nanoparticles. , 2012, Optics letters.

[12]  Kamel Saadi,et al.  Optical vortex generation from molecular chromophore arrays. , 2013, Physical review letters.

[13]  H. Choi,et al.  広島大学学術情報リポジトリ Hiroshima University Institutional Repository Title Chiral Orbital-Angular Momentum in the Surface States of Bi 2 Se 3 , 2022 .

[14]  A. Kildishev,et al.  Planar Photonics with Metasurfaces , 2013, Science.

[15]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[16]  M. Berry The Adiabatic Phase and Pancharatnam's Phase for Polarized Light , 1987 .

[17]  Rajendra Bhandari,et al.  Polarization of light and topological phases , 1997 .

[18]  L. Marrucci,et al.  Polarization pattern of vector vortex beams generated by q-plates with different topological charges. , 2012, Applied optics.

[19]  L. Marrucci,et al.  Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation , 2006, 0712.0101.

[20]  V. D'Ambrosio,et al.  Complete experimental toolbox for alignment-free quantum communication , 2012, Nature Communications.

[21]  Erez Hasman,et al.  Formation of helical beams by use of Pancharatnam-Berry phase optical elements. , 2002, Optics letters.

[22]  R. Blanchard,et al.  Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. , 2012, Nano letters.

[23]  Federico Capasso,et al.  Ultra-thin plasmonic optical vortex plate based on phase discontinuities , 2012 .

[24]  Ying Li,et al.  Photonic polarization gears for ultra-sensitive angular measurements , 2013, Nature Communications.

[25]  Ebrahim Karimi,et al.  Light propagation in a birefringent plate with topological charge. , 2008, Optics letters.

[26]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[27]  Erez Hasman,et al.  Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings. , 2002, Optics letters.

[28]  N. Zheludev,et al.  From metamaterials to metadevices. , 2012, Nature materials.