User-Friendly Expressions of the Coefficients of Some Exponentially Fitted Methods

The purpose of this work consists in reformulating the coefficients of some exponentially-fitted (EF) methods with the aim of avoiding numerical cancellations and loss of precision. Usually the coefficients of an EF method are expressed in terms of \(\nu =\omega h\), where \(\omega \) is the frequency and h is the step size. Often, these coefficients exhibit a 0/0 indeterminate form when \(\nu \rightarrow 0\). To avoid this feature we will use two sets of functions, called C and S, which have been introduced by Ixaru in [61]. We show that the reformulation of the coefficients in terms of these functions leads to a complete removal of the indeterminacy and thus the convergence of the corresponding EF method is restored. Numerical results will be shown to highlight these properties.

[1]  Beatrice Paternoster,et al.  A conditionally P-stable fourth-order exponential-fitting method for y '' = f ( f, y ) , 1999 .

[2]  Beatrice Paternoster,et al.  Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems , 2018, Comput. Phys. Commun..

[3]  Raffaele D'Ambrosio,et al.  Natural Volterra Runge-Kutta methods , 2014, Numerical Algorithms.

[4]  Dajana Conte,et al.  An efficient and fast parallel method for Volterra integral equations of Abel type , 2006 .

[5]  Beatrice Paternoster,et al.  A Practical Approach for the Derivation of Algebraically Stable Two-Step Runge-Kutta Methods , 2012 .

[6]  Liviu Gr. Ixaru Runge-Kutta method with equation dependent coefficients , 2012, Comput. Phys. Commun..

[7]  Helmut Podhaisky,et al.  Explicit two-step peer methods , 2008, Comput. Math. Appl..

[8]  A Family of Multistep Collocation Methods for Volterra Integral Equations , 2007 .

[9]  H. De Meyer,et al.  Deferred correction with mono-implicit Runge-Kutta methods for first-order IVPs , 1999 .

[10]  Beatrice Paternoster,et al.  Order conditions for General Linear Nyström methods , 2014, Numerical Algorithms.

[11]  R. D'Ambrosio,et al.  Numerical solution of reaction-diffusion systems of λ - ω type by trigonometrically fitted methods , 2016 .

[12]  V. Citro,et al.  Nearly conservative multivalue methods with extended bounded parasitism , 2020, Applied Numerical Mathematics.

[13]  Raffaele D'Ambrosio,et al.  Search for highly stable two-step Runge-Kutta methods , 2012 .

[14]  R. D'Ambrosio,et al.  A spectral method for stochastic fractional differential equations , 2019, Applied Numerical Mathematics.

[15]  High order exponentially fitted methods for Volterra integral equations with periodic solution , 2017 .

[16]  Beatrice Paternoster,et al.  Numerical solution of time fractional diffusion systems , 2017 .

[17]  Beatrice Paternoster,et al.  Adapted numerical modelling of the Belousov–Zhabotinsky reaction , 2018, Journal of Mathematical Chemistry.

[18]  Beatrice Paternoster,et al.  Exponentially fitted IMEX methods for advection-diffusion problems , 2017, J. Comput. Appl. Math..

[19]  D. Conte,et al.  Optimal Schwarz waveform relaxation for fractional diffusion-wave equations , 2018 .

[21]  Beatrice Paternoster,et al.  Stability Issues for Selected Stochastic Evolutionary Problems: A Review , 2018, Axioms.

[22]  D. Conte,et al.  Regularized exponentially fitted methods for oscillatory problems , 2020, Journal of Physics: Conference Series.

[23]  G. Vanden Berghe,et al.  Exponentially fitted quadrature rules of Gauss type for oscillatory integrands , 2005 .

[24]  Tom E. Simos A fourth algebraic order exponentially-fitted Runge-Kutta method for the numerical solution of the Schrödinger equation , 2001 .

[25]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[26]  Kazufumi Ozawa,et al.  A functional fitting Runge-Kutta method with variable coefficients , 2001 .

[27]  Beatrice Paternoster,et al.  GPU-acceleration of waveform relaxation methods for large differential systems , 2016, Numerical Algorithms.

[28]  Beatrice Paternoster,et al.  Multivalue collocation methods free from order reduction , 2021, J. Comput. Appl. Math..

[29]  Dajana Conte,et al.  Multistep collocation methods for Volterra integro-differential equations , 2013, Appl. Math. Comput..

[30]  D. Conte,et al.  On the stability of \begin{document} $\vartheta$\end{document} -methods for stochastic Volterra integral equations , 2018 .

[31]  Beatrice Paternoster,et al.  Numerical integration of Hamiltonian problems by G-symplectic methods , 2014, Adv. Comput. Math..

[32]  Manuel Calvo,et al.  Functionally Fitted Explicit Two Step Peer Methods , 2015, J. Sci. Comput..

[33]  Beatrice Paternoster,et al.  Collocation Methods for Volterra Integral and Integro-Differential Equations: A Review , 2018, Axioms.

[34]  Beatrice Paternoster,et al.  Exponential fitting Direct Quadrature methods for Volterra integral equations , 2010, Numerical Algorithms.

[36]  Beatrice Paternoster,et al.  Modified Gauss–Laguerre Exponential Fitting Based Formulae , 2016, J. Sci. Comput..

[37]  Elisa Francomano,et al.  The smoothed particle hydrodynamics method via residual iteration , 2019, Computer Methods in Applied Mechanics and Engineering.

[38]  Beatrice Paternoster,et al.  General Nyström methods in Nordsieck form: Error analysis , 2016, J. Comput. Appl. Math..

[40]  Raffaele D'Ambrosio,et al.  Numerical search for algebraically stable two-step almost collocation methods , 2013, J. Comput. Appl. Math..

[41]  Ronald Cools,et al.  Extended quadrature rules for oscillatory integrands , 2003 .

[42]  Dajana Conte,et al.  New fractional Lanczos vector polynomials and their application to system of Abel-Volterra integral equations and fractional differential equations , 2020, J. Comput. Appl. Math..

[43]  Donatella Occorsio,et al.  Mean convergence of an extended Lagrange interpolation process on [0,+∞) , 2014 .

[44]  J. Greenberg Spiral waves for ?-? systems, II , 1981 .

[45]  M. C. D. Bonis,et al.  On the simultaneous approximation of a Hilbert transform and its derivatives on the real semiaxis , 2017 .

[46]  Ernst Hairer,et al.  Long-Term Stability of Multi-Value Methods for Ordinary Differential Equations , 2014, J. Sci. Comput..

[47]  D. Conte,et al.  Parallel methods for weakly singular Volterra Integral Equations on GPUs , 2017 .

[48]  T. E. Simos,et al.  Phase‐fitted, six‐step methods for solving x′′  =  f(t,x) , 2019, Mathematical Methods in the Applied Sciences.

[49]  R. D'Ambrosio,et al.  Numerical preservation of long-term dynamics by stochastic two-step methods , 2018 .

[50]  Manuel Calvo,et al.  Explicit Runge-Kutta methods for initial value problems with oscillating solutions , 1996 .

[51]  Beatrice Paternoster,et al.  Adapted numerical methods for advection-reaction-diffusion problems generating periodic wavefronts , 2017, Comput. Math. Appl..

[52]  Beatrice Paternoster,et al.  Exponentially fitted singly diagonally implicit Runge-Kutta methods , 2014, J. Comput. Appl. Math..

[53]  M. G. Russo,et al.  Nystrom methods for Fredholm integral equations using equispaced points , 2014 .

[54]  T. Simos,et al.  Explicit hybrid six–step, sixth order, fully symmetric methods for solving  y ″ = f (x,y) , 2019, Mathematical Methods in the Applied Sciences.

[55]  J. Butcher,et al.  Partitioned general linear methods for separable Hamiltonian problems , 2017 .

[56]  G. Capobianco,et al.  Construction and implementation of two-step continuous methods for Volterra integral equations , 2017 .

[57]  D. Conte,et al.  Domain decomposition methods for a class of integro-partial differential equations , 2016 .

[58]  E. Hairer,et al.  G-symplecticity implies conjugate-symplecticity of the underlying one-step method , 2013 .

[59]  L. Gr. Ixaru Exponential and trigonometrical fittings: user-friendly expressions for the coefficients , 2018, Numerical Algorithms.

[60]  Raffaele D'Ambrosio,et al.  Construction of the ef-based Runge-Kutta methods revisited , 2011, Comput. Phys. Commun..

[61]  Beatrice Paternoster,et al.  A general framework for the numerical solution of second order ODEs , 2015, Math. Comput. Simul..

[62]  Matthew J. Smith,et al.  Absolute Stability of Wavetrains Can Explain Spatiotemporal Dynamics in Reaction-Diffusion Systems of Lambda-Omega Type , 2009, SIAM J. Appl. Dyn. Syst..

[63]  G. Capobianco,et al.  High performance parallel numerical methods for Volterra equations with weakly singular kernels , 2009 .

[64]  A reaction-diffusion system of $\lambda$–$\omega$ type Part II: Numerical analysis , 2005, European Journal of Applied Mathematics.

[65]  Beatrice Paternoster,et al.  Some new uses of the etam(Z) functions , 2010, Comput. Phys. Commun..

[66]  Raffaele D’Ambrosio,et al.  Numerical solution of a diffusion problem by exponentially fitted finite difference methods , 2014, SpringerPlus.

[67]  Raffaele D'Ambrosio,et al.  A-stability preserving perturbation of Runge-Kutta methods for stochastic differential equations , 2020, Appl. Math. Lett..

[68]  Beatrice Paternoster,et al.  A Gauss quadrature rule for oscillatory integrands , 2001 .

[69]  D. Conte,et al.  Two-step collocation methods for fractional differential equations , 2018 .

[70]  Nancy Kopell,et al.  Plane Wave Solutions to Reaction‐Diffusion Equations , 1973 .

[71]  H. De Meyer,et al.  Exponentially-fitted explicit Runge–Kutta methods , 1999 .

[72]  J. Greenberg Spiral Waves for $\lambda -\omega $ Systems , 1980 .

[73]  Beatrice Paternoster,et al.  Exponentially fitted two-step Runge-Kutta methods: Construction and parameter selection , 2012, Appl. Math. Comput..

[74]  Samuel N. Jator,et al.  On a family of trigonometrically fitted extended backward differentiation formulas for stiff and oscillatory initial value problems , 2016, Numerical Algorithms.

[75]  Beatrice Paternoster,et al.  p-stable general Nyström methods for y″=f(y(t)) , 2014, J. Comput. Appl. Math..

[76]  Beatrice Paternoster,et al.  Revised exponentially fitted Runge-Kutta-Nyström methods , 2014, Appl. Math. Lett..

[77]  Beatrice Paternoster,et al.  Adapted explicit two-step peer methods , 2019, J. Num. Math..

[78]  Beatrice Paternoster,et al.  Exponentially-fitted Gauss-Laguerre quadrature rule for integrals over an unbounded interval , 2014, J. Comput. Appl. Math..