An indefinite variant of LOBPCG for definite matrix pencils
暂无分享,去创建一个
[1] A. Knyazev,et al. Efficient solution of symmetric eigenvalue problems using multigridpreconditioners in the locally optimal block conjugate gradient method , 2001 .
[2] Vjeran Hari,et al. Block-oriented J-Jacobi methods for Hermitian matrices , 2010 .
[3] Ninoslav Truhar,et al. Relative Perturbation Theory for Matrix Spectral Decompositions , 2000 .
[4] K. Neymeyr. A geometric theory for preconditioned inverse iteration. I : Extrema of the Rayleigh quotient , 2001 .
[5] Klaus Neymeyr,et al. A geometric theory for preconditioned inverse iteration applied to a subspace , 2002, Math. Comput..
[6] Andrew V. Knyazev,et al. Gradient Flow Approach to Geometric Convergence Analysis of Preconditioned Eigensolvers , 2008, SIAM J. Matrix Anal. Appl..
[7] A. Knyazev,et al. A Geometric Theory for Preconditioned Inverse Iteration. III:A Short and Sharp Convergence Estimate for Generalized EigenvalueProblems. , 2001 .
[8] Richard B. Lehoucq,et al. Basis selection in LOBPCG , 2006, J. Comput. Phys..
[9] K. Veselic,et al. Damped Oscillations of Linear Systems: A Mathematical Introduction , 2011 .
[10] V. Mehrmann,et al. Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: Theory, Algorithms and Applications , 2005 .
[11] Daniel Kressner,et al. A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.
[12] Zlatko Drmac,et al. On Positive Semidefinite Matrices with Known Null Space , 2002, SIAM J. Matrix Anal. Appl..
[13] P. Dewilde. Mathematical Introduction , 2018, Classical Theory of Electromagnetism.
[14] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[15] Merico E. Argentati,et al. Preconditioned Eigensolver LOBPCG in hypre and PETSc , 2007 .
[16] E. D'yakonov. Optimization in Solving Elliptic Problems , 1995 .
[17] Leiba Rodman,et al. Matrices and indefinite scalar products , 1983 .
[18] Andrew V. Knyazev,et al. Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..
[19] G. Stewart,et al. Matrix Perturbation Theory , 1990 .
[20] Nicholas J. Higham,et al. NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.
[21] Ming Zhou,et al. Convergence Analysis of Gradient Iterations for the Symmetric Eigenvalue Problem , 2011, SIAM J. Matrix Anal. Appl..
[22] Jan-Erik Roos,et al. A mathematical introduction , 1986 .
[23] Paul Van Dooren,et al. Normwise Scaling of Second Order Polynomial Matrices , 2004, SIAM J. Matrix Anal. Appl..
[24] K. Veselié. A Jacobi eigenreduction algorithm for definite matrix pairs , 1993 .
[25] NEYMEYR A BSTRACT. A GEOMETRIC THEORY FOR PRECONDITIONED INVERSE ITERATION II : CONVERGENCE ESTIMATES KLAUS , 2009 .
[26] N. Higham,et al. Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems , 2002 .
[27] K. Veselic,et al. Trace minimization and definiteness of symmetric pencils , 1995 .
[28] Ren-Cang Li,et al. Trace minimization principles for positive semi-definite pencils , 2013 .
[29] K. Neymeyr. A geometric theory forpreconditioned inverse iterationII: Convergence estimates , 2001 .
[30] Klaus Neymeyr. A Geometric Convergence Theory for the Preconditioned Steepest Descent Iteration , 2012, SIAM J. Numer. Anal..
[31] K. Hannabuss,et al. MATRICES AND INDEFINITE SCALAR PRODUCTS (Operator Theory: Advances and Applications, 8) , 1984 .
[32] B. Parlett. The Symmetric Eigenvalue Problem , 1981 .
[33] Zhaojun Bai,et al. Minimization Principles for the Linear Response Eigenvalue Problem II: Computation , 2013, SIAM J. Matrix Anal. Appl..
[34] Zhaojun Bai,et al. Minimization Principles for the Linear Response Eigenvalue Problem I: Theory , 2012, SIAM J. Matrix Anal. Appl..
[35] Per Christian Hansen,et al. SYMMETRIC RANK REVEALING FACTORIZATIONS , 1999 .
[36] Ren-Cang Li,et al. Minimization Principles for the Linear Response Eigenvalue Problem, III: General Case , 2013 .
[37] Leiba Rodman,et al. Canonical Forms for Hermitian Matrix Pairs under Strict Equivalence and Congruence , 2005, SIAM Rev..
[38] Peter Lancaster,et al. Variational and numerical methods for symmetric matrix pencils , 1991, Bulletin of the Australian Mathematical Society.
[39] Roy Mathias,et al. Quadratic Residual Bounds for the Hermitian Eigenvalue Problem , 1998 .
[40] G. W. Stewart,et al. Matrix algorithms , 1998 .