An indefinite variant of LOBPCG for definite matrix pencils

In this paper, we propose a novel preconditioned solver for generalized Hermitian eigenvalue problems. More specifically, we address the case of a definite matrix pencil A−λB$A-\lambda B$, that is, A, B are Hermitian and there is a shift λ0$\lambda _{0}$ such that A−λ0B$A-\lambda _{0} B$ is definite. Our new method can be seen as a variant of the popular LOBPCG method operating in an indefinite inner product. It also turns out to be a generalization of the recently proposed LOBP4DCG method by Bai and Li for solving product eigenvalue problems. Several numerical experiments demonstrate the effectiveness of our method for addressing certain product and quadratic eigenvalue problems.

[1]  A. Knyazev,et al.  Efficient solution of symmetric eigenvalue problems using multigridpreconditioners in the locally optimal block conjugate gradient method , 2001 .

[2]  Vjeran Hari,et al.  Block-oriented J-Jacobi methods for Hermitian matrices , 2010 .

[3]  Ninoslav Truhar,et al.  Relative Perturbation Theory for Matrix Spectral Decompositions , 2000 .

[4]  K. Neymeyr A geometric theory for preconditioned inverse iteration. I : Extrema of the Rayleigh quotient , 2001 .

[5]  Klaus Neymeyr,et al.  A geometric theory for preconditioned inverse iteration applied to a subspace , 2002, Math. Comput..

[6]  Andrew V. Knyazev,et al.  Gradient Flow Approach to Geometric Convergence Analysis of Preconditioned Eigensolvers , 2008, SIAM J. Matrix Anal. Appl..

[7]  A. Knyazev,et al.  A Geometric Theory for Preconditioned Inverse Iteration. III:A Short and Sharp Convergence Estimate for Generalized EigenvalueProblems. , 2001 .

[8]  Richard B. Lehoucq,et al.  Basis selection in LOBPCG , 2006, J. Comput. Phys..

[9]  K. Veselic,et al.  Damped Oscillations of Linear Systems: A Mathematical Introduction , 2011 .

[10]  V. Mehrmann,et al.  Skew-Hamiltonian and Hamiltonian Eigenvalue Problems: Theory, Algorithms and Applications , 2005 .

[11]  Daniel Kressner,et al.  A literature survey of low‐rank tensor approximation techniques , 2013, 1302.7121.

[12]  Zlatko Drmac,et al.  On Positive Semidefinite Matrices with Known Null Space , 2002, SIAM J. Matrix Anal. Appl..

[13]  P. Dewilde Mathematical Introduction , 2018, Classical Theory of Electromagnetism.

[14]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[15]  Merico E. Argentati,et al.  Preconditioned Eigensolver LOBPCG in hypre and PETSc , 2007 .

[16]  E. D'yakonov Optimization in Solving Elliptic Problems , 1995 .

[17]  Leiba Rodman,et al.  Matrices and indefinite scalar products , 1983 .

[18]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[19]  G. Stewart,et al.  Matrix Perturbation Theory , 1990 .

[20]  Nicholas J. Higham,et al.  NLEVP: A Collection of Nonlinear Eigenvalue Problems , 2013, TOMS.

[21]  Ming Zhou,et al.  Convergence Analysis of Gradient Iterations for the Symmetric Eigenvalue Problem , 2011, SIAM J. Matrix Anal. Appl..

[22]  Jan-Erik Roos,et al.  A mathematical introduction , 1986 .

[23]  Paul Van Dooren,et al.  Normwise Scaling of Second Order Polynomial Matrices , 2004, SIAM J. Matrix Anal. Appl..

[24]  K. Veselié A Jacobi eigenreduction algorithm for definite matrix pairs , 1993 .

[25]  NEYMEYR A BSTRACT A GEOMETRIC THEORY FOR PRECONDITIONED INVERSE ITERATION II : CONVERGENCE ESTIMATES KLAUS , 2009 .

[26]  N. Higham,et al.  Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems , 2002 .

[27]  K. Veselic,et al.  Trace minimization and definiteness of symmetric pencils , 1995 .

[28]  Ren-Cang Li,et al.  Trace minimization principles for positive semi-definite pencils , 2013 .

[29]  K. Neymeyr A geometric theory forpreconditioned inverse iterationII: Convergence estimates , 2001 .

[30]  Klaus Neymeyr A Geometric Convergence Theory for the Preconditioned Steepest Descent Iteration , 2012, SIAM J. Numer. Anal..

[31]  K. Hannabuss,et al.  MATRICES AND INDEFINITE SCALAR PRODUCTS (Operator Theory: Advances and Applications, 8) , 1984 .

[32]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[33]  Zhaojun Bai,et al.  Minimization Principles for the Linear Response Eigenvalue Problem II: Computation , 2013, SIAM J. Matrix Anal. Appl..

[34]  Zhaojun Bai,et al.  Minimization Principles for the Linear Response Eigenvalue Problem I: Theory , 2012, SIAM J. Matrix Anal. Appl..

[35]  Per Christian Hansen,et al.  SYMMETRIC RANK REVEALING FACTORIZATIONS , 1999 .

[36]  Ren-Cang Li,et al.  Minimization Principles for the Linear Response Eigenvalue Problem, III: General Case , 2013 .

[37]  Leiba Rodman,et al.  Canonical Forms for Hermitian Matrix Pairs under Strict Equivalence and Congruence , 2005, SIAM Rev..

[38]  Peter Lancaster,et al.  Variational and numerical methods for symmetric matrix pencils , 1991, Bulletin of the Australian Mathematical Society.

[39]  Roy Mathias,et al.  Quadratic Residual Bounds for the Hermitian Eigenvalue Problem , 1998 .

[40]  G. W. Stewart,et al.  Matrix algorithms , 1998 .