Fault Detection of Nonlinear Processes Using Fuzzy C-means-based Kernel PCA

Nonlinearity in industrial processes such as chemical and biological processes is still a significant problem. Kernel principal component analysis (KPCA) has recently proven to be a powerful tool for monitoring nonlinear processes with numerous mutually correlated measured variables. One of the drawbacks of original KPCA is that computation time increases with the number of samples. In this article, fuzzy C-means clustering technique (FCM) is adopted to reduce the computational complexity of KPCA. The proposed approach (FCM-KPCA) is applied for fault detection of the Tennessee Eastman chemical process. Simulation results show the effectiveness of the proposed approach in terms of low computational cost and low missed detection rate. Keywords—Fault detection, fuzzy C-means, kernel PCA, nonlinear processes.

[1]  Xu Zhao,et al.  Nonlinear Real‐time Process Monitoring and Fault Diagnosis Based on Principal Component Analysis and Kernel Fisher Discriminant Analysis , 2007 .

[2]  U. Kruger,et al.  Moving window kernel PCA for adaptive monitoring of nonlinear processes , 2009 .

[3]  Zhi-huan Song,et al.  Process Monitoring Based on Independent Component Analysis - Principal Component Analysis ( ICA - PCA ) and Similarity Factors , 2007 .

[4]  Jicong Fan,et al.  Fault detection and diagnosis of non-linear non-Gaussian dynamic processes using kernel dynamic independent component analysis , 2014, Inf. Sci..

[5]  J. Edward Jackson,et al.  A User's Guide to Principal Components. , 1991 .

[6]  C. Yoo,et al.  Nonlinear process monitoring using kernel principal component analysis , 2004 .

[7]  Zhi-Huan Song,et al.  A novel fault diagnosis system using pattern classification on kernel FDA subspace , 2011, Expert Syst. Appl..

[8]  Fuli Wang,et al.  Nonlinear process monitoring based on kernel dissimilarity analysis , 2009 .

[9]  S. Joe Qin,et al.  Statistical process monitoring: basics and beyond , 2003 .

[10]  Yingwei Zhang,et al.  Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM , 2009 .

[11]  Jay Lee,et al.  A modified support vector data description based novelty detection approach for machinery components , 2013, Appl. Soft Comput..

[12]  Xuefeng Yan,et al.  Non-Gaussian chemical process monitoring with adaptively weighted independent component analysis and its applications , 2013 .

[13]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[14]  Renquan Lu,et al.  Fault Identification of Nonlinear Processes , 2013 .

[15]  Tian Xuemin,et al.  Nonlinear Process Monitoring Using Dynamic Sparse Kernel Classifier , 2012 .

[16]  Golub Gene H. Et.Al Matrix Computations, 3rd Edition , 2007 .

[17]  Lorenz T. Biegler,et al.  Dynamic optimization of the Tennessee Eastman process using the OptControlCentre , 2003, Comput. Chem. Eng..

[18]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[19]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[20]  Chi Ma,et al.  Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS , 2011 .

[21]  Zhang Ying,et al.  Decentralized Fault Diagnosis of Large-scale Processes Using Multiblock Kernel Principal Component Analysis: Decentralized Fault Diagnosis of Large-scale Processes Using Multiblock Kernel Principal Component Analysis , 2010 .

[22]  Richard D. Braatz,et al.  Fault Detection and Diagnosis in Industrial Systems , 2001 .

[23]  Roman Rosipal,et al.  Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space , 2002, J. Mach. Learn. Res..

[24]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[25]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .

[26]  S. Qin,et al.  Improved nonlinear fault detection technique and statistical analysis , 2008 .

[27]  Dale E. Seborg,et al.  Evaluation of a pattern matching method for the Tennessee Eastman challenge process , 2006 .

[28]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[29]  Junhong Li,et al.  Improved kernel principal component analysis for fault detection , 2008, Expert Syst. Appl..

[30]  Jian Yang,et al.  KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Fei Liu,et al.  On-Line Nonlinear Process Monitoring Using Kernel Principal Component Analysis and Neural Network , 2006, ISNN.