microRNA-122 target sites in the hepatitis C virus RNA NS5B coding region and 3′ untranslated region: function in replication and influence of RNA secondary structure

[1]  R. Bartenschlager,et al.  Conserved RNA secondary structures and long-range interactions in hepatitis C viruses , 2015, RNA.

[2]  A. Mele,et al.  Hepatitis C Virus RNA Functionally Sequesters miR-122 , 2015, Cell.

[3]  K. Weeks,et al.  Functionally conserved architecture of hepatitis C virus RNA genomes , 2015, Proceedings of the National Academy of Sciences.

[4]  I. MacRae,et al.  Gene regulation. Structural basis for microRNA targeting. , 2014 .

[5]  I. MacRae,et al.  Structural basis for microRNA targeting , 2014, Science.

[6]  Daehyun Baek,et al.  mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. , 2014, Molecular cell.

[7]  Jean Hausser,et al.  MicroRNA binding sites in the coding region of mRNAs: Extending the repertoire of post‐transcriptional gene regulation , 2014, BioEssays : news and reviews in molecular, cellular and developmental biology.

[8]  William A. Rennie,et al.  CLIP-based prediction of mammalian microRNA binding sites , 2013, Nucleic acids research.

[9]  D. Tollervey,et al.  Mapping the Human miRNA Interactome by CLASH Reveals Frequent Noncanonical Binding , 2013, Cell.

[10]  V. Lohmann Hepatitis C Virus RNA Replication , 2013, Current topics in microbiology and immunology.

[11]  J. Doudna,et al.  Unconventional miR-122 binding stabilizes the HCV genome by forming a trimolecular RNA structure , 2013, Nucleic acids research.

[12]  G. Meister,et al.  microRNA-122 Dependent Binding of Ago2 Protein to Hepatitis C Virus RNA Is Associated with Enhanced RNA Stability and Translation Stimulation , 2013, PloS one.

[13]  M. Zavolan,et al.  A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets , 2013, Nature Methods.

[14]  S. Lemon,et al.  Competing and noncompeting activities of miR-122 and the 5′ exonuclease Xrn1 in regulation of hepatitis C virus replication , 2012, Proceedings of the National Academy of Sciences.

[15]  Ray M. Marín,et al.  Analysis of the accessibility of CLIP bound sites reveals that nucleation of the miRNA:mRNA pairing occurs preferentially at the 3'-end of the seed match. , 2012, RNA.

[16]  M. Niepmann,et al.  Stimulation of Hepatitis C Virus RNA translation by microRNA-122 occurs under different conditions in vivo and in vitro. , 2012, Virus research.

[17]  Nahum Sonenberg,et al.  The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC , 2012, Nature Structural &Molecular Biology.

[18]  S. Lemon,et al.  Base Pairing between Hepatitis C Virus RNA and MicroRNA 122 3′ of Its Seed Sequence Is Essential for Genome Stabilization and Production of Infectious Virus , 2012, Journal of Virology.

[19]  C. Jopling,et al.  Liver-specific microRNA-122 , 2012, RNA biology.

[20]  M. Niepmann,et al.  Differential stimulation of hepatitis C virus RNA translation by microRNA-122 in different cell cycle phases , 2012, Cell cycle.

[21]  S. Lemon,et al.  Stabilization of hepatitis C virus RNA by an Ago2–miR-122 complex , 2012, Proceedings of the National Academy of Sciences.

[22]  Peter F. Stadler,et al.  ViennaRNA Package 2.0 , 2011, Algorithms for Molecular Biology.

[23]  Ashley P E Roberts,et al.  miR-122 activates hepatitis C virus translation by a specialized mechanism requiring particular RNA components , 2011, Nucleic acids research.

[24]  Nicholas S M Putz,et al.  Increased siRNA duplex stability correlates with reduced off-target and elevated on-target effects. , 2011, RNA: A publication of the RNA Society.

[25]  Rodney K. Lyn,et al.  Competing roles of microRNA-122 recognition elements in hepatitis C virus RNA. , 2011, Virology.

[26]  E. Izaurralde,et al.  Gene silencing by microRNAs: contributions of translational repression and mRNA decay , 2011, Nature Reviews Genetics.

[27]  C. Richardson,et al.  Human Ago2 Is Required for Efficient MicroRNA 122 Regulation of Hepatitis C Virus RNA Accumulation and Translation , 2010, Journal of Virology.

[28]  Jirí Vanícek,et al.  Efficient use of accessibility in microRNA target prediction , 2010, Nucleic Acids Res..

[29]  B. Berger,et al.  Conserved microRNA targeting in Drosophila is as widespread in coding regions as in 3′UTRs , 2010, Proceedings of the National Academy of Sciences.

[30]  S. Lemon,et al.  Regulation of Hepatitis C Virus Translation and Infectious Virus Production by the MicroRNA miR-122 , 2010, Journal of Virology.

[31]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[32]  M. Niepmann Activation of hepatitis c virus translation by a liver-specific microRNA , 2009, Cell cycle.

[33]  Yann Ponty,et al.  VARNA: Interactive drawing and editing of the RNA secondary structure , 2009, Bioinform..

[34]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[35]  J. Doudna,et al.  A three-dimensional view of the molecular machinery of RNA interference , 2009, Nature.

[36]  T. Tuschl,et al.  Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex , 2008, Nature.

[37]  G. Obernosterer,et al.  Target site effects in the RNA interference and microRNA pathways. , 2008, Biochemical Society transactions.

[38]  Michael Niepmann,et al.  microRNA-122 stimulates translation of hepatitis C virus RNA , 2008, The EMBO journal.

[39]  Gunter Meister,et al.  A multifunctional human Argonaute2-specific monoclonal antibody. , 2008, RNA.

[40]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[41]  Ronny Lorenz,et al.  The Vienna RNA Websuite , 2008, Nucleic Acids Res..

[42]  J. Kitzman,et al.  Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. , 2007, RNA.

[43]  I. Hofacker How microRNAs choose their targets , 2007, Nature Genetics.

[44]  Michael Kertesz,et al.  The role of site accessibility in microRNA target recognition , 2007, Nature Genetics.

[45]  G. Meister,et al.  Identification of Human microRNA Targets From Isolated Argonaute Protein Complexes , 2007, RNA biology.

[46]  Dang D. Long,et al.  Potent effect of target structure on microRNA function , 2007, Nature Structural &Molecular Biology.

[47]  R. Bartenschlager,et al.  The Hepatitis C Virus RNA 3′-Untranslated Region Strongly Enhances Translation Directed by the Internal Ribosome Entry Site , 2006, Journal of Virology.

[48]  A. Shavinskaya,et al.  Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Ligang Wu,et al.  Micro-RNA Regulation of the Mammalian lin-28 Gene during Neuronal Differentiation of Embryonal Carcinoma Cells , 2005, Molecular and Cellular Biology.

[50]  P. Sarnow,et al.  Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA , 2005, Science.

[51]  Toshiaki Maruyama,et al.  Complete Replication of Hepatitis C Virus in Cell Culture , 2005, Science.

[52]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[53]  C. Sander,et al.  miR-122, a Mammalian Liver-Specific microRNA, is Processed from hcr mRNA and MayDownregulate the High Affinity Cationic Amino Acid Transporter CAT-1 , 2004, RNA biology.

[54]  D. Turner,et al.  Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[55]  M. Mizokami,et al.  Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. , 2003, Gastroenterology.

[56]  R. Bartenschlager,et al.  Hepatitis C virus RNA replication is resistant to tumour necrosis factor-α , 2003 .

[57]  J. Silver,et al.  Replication of Subgenomic Hepatitis C Virus Rnas in a Hepatoma Cell Line , 1999 .

[58]  M. Lai,et al.  The 3′-Untranslated Region of Hepatitis C Virus RNA Enhances Translation from an Internal Ribosomal Entry Site , 1998, Journal of Virology.

[59]  M. Niepmann Hepatitis C virus RNA translation. , 2013, Current topics in microbiology and immunology.

[60]  F. Penin,et al.  Hepatitis C virus proteins: from structure to function. , 2013, Current topics in microbiology and immunology.