On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3

Al2O3 is a versatile high-κ dielectric that has excellent surface passivation properties on crystalline Si (c-Si), which are of vital importance for devices such as light emitting diodes and high-efficiency solar cells. We demonstrate both experimentally and by simulations that the surface passivation can be related to a satisfactory low interface defect density in combination with a strong field-effect passivation induced by a negative fixed charge density Qf of up to 1013 cm−2 present in the Al2O3 film at the interface with the underlying Si substrate. The negative polarity of Qf in Al2O3 is especially beneficial for the passivation of p-type c-Si as the bulk minority carriers are shielded from the c-Si surface. As the level of field-effect passivation is shown to scale with Qf2, the high Qf in Al2O3 tolerates a higher interface defect density on c-Si compared to alternative surface passivation schemes.

[1]  A. Cuevas,et al.  Very low bulk and surface recombination in oxidized silicon wafers , 2002 .

[2]  I. Tanaka,et al.  Coordination and interface analysis of atomic-layer-deposition Al2O3 on Si(001) using energy-loss near-edge structures , 2003 .

[3]  R. Mertens,et al.  Determination of Si-SiO/sub 2/ interface recombination parameters using a gate-controlled point-junction diode under illumination , 1988 .

[4]  Ho-Kyu Kang,et al.  Post-Annealing Effects on Fixed Charge and Slow/Fast Interface States of TiN/Al2O3/p-Si Metal–Oxide–Semiconductor Capacitor , 2003 .

[5]  Eduard A. Cartier,et al.  High-resolution depth profiling in ultrathin Al2O3 films on Si , 2000 .

[6]  L. Truong,et al.  Admittance spectroscopy of traps at the interfaces of (100)Si with Al2O3, ZrO2, and HfO2 , 2005, Microelectron. Reliab..

[7]  Miin-Jang Chen,et al.  Enhancement in the efficiency of light emission from silicon by a thin Al2O3 surface-passivating layer grown by atomic layer deposition at low temperature , 2007 .

[8]  R. Hezel,et al.  Low‐Temperature Surface Passivation of Silicon for Solar Cells , 1989 .

[9]  G. Lucovsky Transition from thermally grown gate dielectrics to deposited gate dielectrics for advanced silicon devices: A classification scheme based on bond ionicity , 2001 .

[10]  S. Deleonibus,et al.  Reduction of fixed charges in atomic layer deposited Al2O3 dielectrics , 2005 .

[11]  Harold Dekkers,et al.  Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge , 2006 .

[12]  Kirk Ct,et al.  Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica. , 1988 .

[13]  R. Alcubilla,et al.  Characterization of a-Si:H∕c-Si interfaces by effective-lifetime measurements , 2005 .

[14]  N. Browning,et al.  Analysis of ultrathin SiO2 interface layers in chemical vapor deposition of Al2O3 on Si by in situ scanning transmission electron microscopy , 2003 .

[15]  Michael Specht,et al.  Charge trapping memory structures with Al2O3 trapping dielectric for high-temperature applications , 2005 .

[16]  C. Voz,et al.  Crystalline silicon surface passivation with amorphous SiCx:H films deposited by plasma-enhanced chemical-vapor deposition , 2005 .

[17]  C. Hwang,et al.  Comparison of Properties of an Al2O3 Thin Layers Grown with Remote O2 Plasma, H2O , or O3 as Oxidants in an ALD Process for HfO2 Gate Dielectrics , 2005 .

[18]  Haller,et al.  Defects in semiconductors: some fatal, some vital , 1998, Science.

[19]  N. Browning,et al.  Metalorganic chemical vapor deposition of aluminum oxide on Si: Evidence of interface SiO2 formation , 2002 .

[20]  W. Warta,et al.  Field-effect passivation of the SiO2Si interface , 1999 .

[21]  Fred P. Klemens,et al.  Multi-component high-K gate dielectrics for the silicon industry , 2001 .

[22]  In-Seok Yeo,et al.  Characteristics of n+ polycrystalline-Si/Al2O3/Si metal–oxide– semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH3)3 and H2O vapor , 2001 .

[23]  S. R. Butler,et al.  Electronic charge trapping in chemical vapor‐deposited thin films of Al2O3 on silicon , 1972 .

[24]  R. S. Johnson,et al.  Physical and electrical properties of noncrystalline Al2O3 prepared by remote plasma enhanced chemical vapor deposition , 2001 .

[25]  Eli Yablonovitch,et al.  Surface Recombination Measurements on III-V Candidate Materials for Nanostructure Light-Emitting Diodes , 2000 .

[26]  K. Weber,et al.  Defect generation at the Si–SiO2 interface following corona charging , 2007 .

[27]  Y. Ikuhara,et al.  First-principles calculations of intrinsic defects inAl2O3 , 2003 .

[28]  Christophe Ballif,et al.  Model for a-Si: H/c-Si interface recombination based on the amphoteric nature of silicon dangling bonds , 2007 .

[29]  Jan Benick,et al.  High efficiency n-type Si solar cells on Al2O3-passivated boron emitters , 2008 .

[30]  R. Hezel,et al.  Plasma Si nitride: A promising dielectric to achieve high-quality silicon MIS/IL solar cells , 1981 .

[31]  G. Higashi,et al.  Sequential surface chemical reaction limited growth of high quality Al2O3 dielectrics , 1989 .

[32]  G. Lucovsky A chemical bonding model for the native oxides of the III–V compound semiconductors , 1981 .

[33]  P. Altermatt,et al.  Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3 , 2007 .

[34]  B. Hoex,et al.  Negative charge and charging dynamics in Al2O3 films on Si characterized by second-harmonic generation , 2008 .

[35]  E. H. Nicollian,et al.  The si-sio, interface – electrical properties as determined by the metal-insulator-silicon conductance technique , 1967 .

[36]  J. Roh,et al.  Influence of oxidant source on the property of atomic layer deposited Al2O3 on hydrogen-terminated Si substrate , 2005 .

[37]  M. Kunst,et al.  Recombination at the silicon nitride/silicon interface , 1997 .

[38]  R. Kuse,et al.  Effect of precursor concentration in atomic layer deposition of Al2O3 , 2003 .

[39]  Wmm Erwin Kessels,et al.  Surface passivation of high‐efficiency silicon solar cells by atomic‐layer‐deposited Al2O3 , 2008 .

[40]  Wilhelm Warta,et al.  Impact of illumination level and oxide parameters on Shockley–Read–Hall recombination at the Si‐SiO2 interface , 1992 .

[41]  Wmm Erwin Kessels,et al.  Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3 , 2006 .

[42]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[43]  John Robertson,et al.  Behavior of hydrogen in high dielectric constant oxide gate insulators , 2003 .

[44]  C. Hwang,et al.  Property Changes of Aluminum Oxide Thin Films Deposited by Atomic Layer Deposition under Photon Radiation , 2006 .

[45]  Armin G. Aberle,et al.  Surface passivation of crystalline silicon solar cells: a review , 2000 .

[46]  Mark Kerr,et al.  Recombination at the interface between silicon and stoichiometric plasma silicon nitride , 2002 .

[47]  Veena Misra,et al.  Bonding constraints and defect formation at interfaces between crystalline silicon and advanced single layer and composite gate dielectrics , 1999 .

[48]  Rudolf Hezel,et al.  Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells , 2002 .

[49]  K. Kukli,et al.  Influence of single and double deposition temperatures on the interface quality of atomic layer deposited Al2O3 dielectric thin films on silicon , 2006 .

[50]  M. Ishida,et al.  Effect of Annealing on Physical and Electrical Properties of Ultrathin Crystalline γ-Al2O3 High-k Dielectric Deposited on Si Substrates , 2004 .

[51]  E. Bassous,et al.  Charge in SiO2 ‐ Al2 O 3 Double Layers on Silicon , 1973 .