Linearity investigation from a vibratory fatigue bench

High-cycle fatigue behaviour of structures can be obtained through vibratory tests using frequency response functions or transmissibilities. To this end, this study deals with the qualification of the vibratory fatigue bench developed at the Laboratory of Mechanic of Normandy. This bench uses an electrodynamic shaker which can reach excitation frequencies that are higher than conventional fatigue machines. To carry out relevant tests, the capacities of the test bench must be well known. Correlations between excitation and response were investigated to determine the allowable setpoints to maintain linearity between the input and output signals to validate our system. The difficulties related to the experiments were presented and discussed.

[1]  Stefanie E. Stanzl-Tschegg,et al.  Very high cycle fatigue measuring techniques , 2014 .

[2]  C. Gautrelet,et al.  Fatigue curves of a low carbon steel obtained from vibration experiments with an electrodynamic shaker , 2015 .

[3]  Jan Drewes Achenbach,et al.  Crack detection by resonant frequency measurements , 1995 .

[4]  Jeremy D. Seidt,et al.  Development of a novel vibration-based fatigue testing methodology , 2004 .

[5]  P. Xue,et al.  Fatigue behavior of aluminum stiffened plate subjected to random vibration loading , 2014 .

[6]  Ulrich Krupp,et al.  Fatigue Crack Propagation in Metals and Alloys , 2007 .

[7]  Ed Habtour,et al.  Life estimation model of a cantilevered beam subjected to complex random vibration , 2012 .

[8]  K. Mahadevan,et al.  High cyclic fatigue characteristics of gravity cast AZ91 magnesium alloy subjected to transverse load , 2009 .

[9]  W. Xu,et al.  Failure criterion of titanium alloy irregular sheet specimens for vibration-based bending fatigue testing , 2018 .

[10]  Janko Slavič,et al.  Uninterrupted and accelerated vibrational fatigue testing with simultaneous monitoring of the natural frequency and damping , 2012 .

[11]  Fatigue sous environnement vibratoire: conception d'une éprouvette pour des essais accélérés en fatigue afin de valider une méthode de dimensionnement pour des structures réelles. , 2013 .

[12]  Alessandra Eleonora Gallinatti,et al.  Fatigue damage identification by means of modal parameters , 2011 .

[13]  U. Krupp Fatigue Crack Propagation in Metals and Alloys: Microstructural Aspects and Modelling Concepts , 2007 .

[14]  Giuliano Allegri,et al.  On the inverse power laws for accelerated random fatigue testing , 2008 .

[15]  K. L. Jerina,et al.  Material damping in 6061-T6511 aluminium to assess fatigue damage , 2003 .

[16]  Janko Slavič,et al.  Assessment of the Fatigue Parameters from Random Vibration Testing: Application to a Rivet Joint , 2016 .

[17]  Bram Cornelis,et al.  Synthesis of Sine-on-Random vibration profiles for accelerated life tests based on fatigue damage spectrum equivalence , 2018 .

[18]  Janko Slavič,et al.  Multiaxial vibration fatigue—A theoretical and experimental comparison , 2016 .

[19]  Christoph W. Schwingshackl,et al.  An advanced underplatform damper modelling approach based on a microslip contact model , 2017, Journal of Sound and Vibration.

[20]  H. Wentzel,et al.  Mechanisms of dissipation in frictional joints—Influence of sharp contact edges and plastic deformation , 2008 .

[21]  M. Bennebach,et al.  Fatigue of Structures in Mechanical Vibratory Environment. From Mission Profiling to Fatigue Life Prediction , 2013 .

[22]  Maxence Claeys Réponses vibratoires non-linéaires dans un contexte industriel : essais et simulations , 2015 .

[23]  O. S. Salawu Detection of structural damage through changes in frequency: a review , 1997 .

[24]  Ed Habtour,et al.  Detection of fatigue damage precursor using a nonlinear vibration approach , 2016 .

[25]  David J. Ewins,et al.  A closed-loop model for single/multi-shaker modal testing , 1991 .

[26]  Janko Slavič,et al.  Frequency-domain methods for a vibration-fatigue-life estimation – Application to real data , 2013 .

[27]  A. Navarro,et al.  The variation of resonance frequency in fatigue tests as a tool for in-situ identification of crack initiation and propagation, and for the determination of cracked areas , 2015 .

[28]  T. Sakiyama,et al.  Influence of compressive plastic zone at the crack tip upon fatigue crack propagation , 2008 .

[29]  Large deflection of thin plates in cylindrical bending – Non-unique solutions , 2008 .

[30]  H. M. Gomes,et al.  A Simple Closed-Loop Active Control of Electrodynamic Shakers by Acceleration Power Spectral Density for Environmental Vibration Tests , 2008 .