PATTERN SPACE MAINTENANCE FOR DATA UPDATES AND INTERACTIVE MINING *

This article addresses the incremental and decremental maintenance of the frequent pattern space. We conduct an in‐depth investigation on how the frequent pattern space evolves under both incremental and decremental updates. Based on the evolution analysis, a new data structure, Generator‐Enumeration Tree (GE‐tree), is developed to facilitate the maintenance of the frequent pattern space. With the concept of GE‐tree, we propose two novel algorithms, Pattern Space Maintainer+ (PSM+) and Pattern Space Maintainer− (PSM−), for the incremental and decremental maintenance of frequent patterns. Experimental results demonstrate that the proposed algorithms, on average, outperform the representative state‐of‐the‐art methods by an order of magnitude.

[1]  J. Steurer,et al.  [Relative risk and odds ratio]. , 1997, Praxis.

[2]  Gösta Grahne,et al.  Fast algorithms for frequent itemset mining using FP-trees , 2005, IEEE Transactions on Knowledge and Data Engineering.

[3]  Philip S. Yu,et al.  Catch the moment: maintaining closed frequent itemsets over a data stream sliding window , 2006, Knowledge and Information Systems.

[4]  Bart Goethals,et al.  Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations (FIMI'03) , 2003 .

[5]  Mohammed J. Zaki,et al.  Efficiently mining maximal frequent itemsets , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[6]  Heikki Mannila,et al.  Levelwise Search and Borders of Theories in Knowledge Discovery , 1997, Data Mining and Knowledge Discovery.

[7]  Jian Pei,et al.  CLOSET+: searching for the best strategies for mining frequent closed itemsets , 2003, KDD '03.

[8]  Jiawei Han,et al.  Maintenance of discovered association rules in large databases: an incremental updating technique , 1996, Proceedings of the Twelfth International Conference on Data Engineering.

[9]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[10]  Jinyan Li,et al.  Relative risk and odds ratio: a data mining perspective , 2005, PODS '05.

[11]  Ke Wang,et al.  Mining Frequent Itemsets Using Support Constraints , 2000, VLDB.

[12]  David Wai-Lok Cheung,et al.  A General Incremental Technique for Maintaining Discovered Association Rules , 1997, DASFAA.

[13]  Bart Goethals,et al.  Advances in Frequent Itemset Mining Implementations: Introduction to FIMI03 , 2003, FIMI.

[14]  Anthony K. H. Tung,et al.  Incremental maintenance of quotient cube for median , 2004, KDD.

[15]  Zhan Li,et al.  Knowledge and Information Systems , 2007 .

[16]  Ming-Syan Chen,et al.  Sliding window filtering: an efficient method for incremental mining on a time-variant database , 2005, Inf. Syst..

[17]  Roberto J. Bayardo,et al.  Efficiently mining long patterns from databases , 1998, SIGMOD '98.

[18]  Srinivasan Parthasarathy,et al.  Mining Frequent Itemsets in Evolving Databases , 2002, SDM.

[19]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[20]  Nicolas Pasquier,et al.  Discovering Frequent Closed Itemsets for Association Rules , 1999, ICDT.