Interactive Stratospheric Aerosol models response to different amount and altitude of SO 2 injections during the 1991 Pinatubo eruption

. Recent model inter-comparison studies highlighted model discrepancies in reproducing the climatic impacts of large explosive volcanic eruptions, calling into question the reliability of global aerosol model simulations for future scenarios. Here, we analyse the simulated evolution of the stratospheric aerosol plume following the well observed June 1991 Mt. Pinatubo eruption by six interactive stratospheric aerosol microphysics models in comparison to a range of observational data sets. Our primary focus is on the uncertainties regarding initial SO 2 emission following the Pinatubo eruption in 1991, as pre- 5 scribed in the Historical Eruptions SO 2 Emission Assessment experiments (HErSEA), in the framework of the Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP). Six global models with interactive aerosol microphysics took part in this study: ECHAM6-SALSA, EMAC, ECHAM5-HAM, SOCOL-AERv2, ULAQ-CCM and UM-UKCA. Model simulations are performed by varying SO 2 injection amount (ranging between 5 and 10 Tg-S), and the altitude of injection (between 18-25 km). sets of initial parameters for the stratospheric SO 2 , both in terms of magnitude (5, 7 or 10 Tg-S injected) and altitude of the SO 2 plume (18-20, 21-23, 18-23 km, uniformly distributed). We found that different sets of initial conditions of the volcanic emissions are required in different models to reproduce available observations from that time period. The experiment protocol that best fits the observation also changes in some models depending on the variables to be considered (aerosol optical depth, effective radius, sulfate burden, surface area density).

[1]  S. Tilmes,et al.  Dependency of the impacts of geoengineering on the stratospheric sulfur injection strategy part 1: Intercomparison of modal and sectional aerosol module , 2021, Atmospheric Chemistry and Physics.

[2]  C. Timmreck,et al.  Supplementary material to "Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment" , 2021, Geoscientific Model Development.

[3]  J. Lelieveld,et al.  Radiative forcing by volcanic eruptions since 1990, calculated with a chemistry-climate model and a new emission inventory based on vertically resolved satellite measurements , 2021 .

[4]  M. Höpfner,et al.  Modeling the Sulfate Aerosol Evolution After Recent Moderate Volcanic Activity, 2008–2012 , 2021, Journal of Geophysical Research: Atmospheres.

[5]  W. Paul Menzel,et al.  Observed HIRS and Aqua MODIS Thermal Infrared Moisture Determinations in the 2000s , 2021, Remote. Sens..

[6]  M. Mills,et al.  Identifying the sources of uncertainty in climate model simulations of solar radiation modification with the G6sulfur and G6solar Geoengineering Model Intercomparison Project (GeoMIP) simulations , 2021 .

[7]  G. Mann,et al.  Evaluating the simulated radiative forcings, aerosol properties, and stratospheric warmings from the 1963 Mt Agung, 1982 El Chichón, and 1991 Mt Pinatubo volcanic aerosol clouds , 2020, Atmospheric Chemistry and Physics.

[8]  Nicholas Ernest,et al.  The Global Space-based Stratospheric Aerosol Climatology (version 2.0): 1979–2018 , 2020 .

[9]  C. Timmreck,et al.  Model physics and chemistry causing intermodel disagreement within the VolMIP-Tambora Interactive Stratospheric Aerosol ensemble , 2020, Atmospheric Chemistry and Physics.

[10]  C. Timmreck,et al.  Simulation of ash clouds after a Laacher See-type eruption , 2020, Climate of the Past.

[11]  Larry W. Thomason,et al.  A Global Space-based Stratospheric Aerosol Climatology (Version 2.0): 1979–2018 , 2020 .

[12]  B. Luo,et al.  Retrieval of Aerosol Size Distributions From In Situ Particle Counter Measurements: Instrument Counting Efficiency and Comparisons With Satellite Measurements , 2019, Journal of geophysical research. Atmospheres : JGR.

[13]  Andrew Gettelman,et al.  Volcanic Radiative Forcing From 1979 to 2015 , 2018, Journal of Geophysical Research: Atmospheres.

[14]  U. Lohmann,et al.  SALSA2.0: The sectional aerosol module of the aerosol–chemistry–climate model ECHAM6.3.0-HAM2.3-MOZ1.0 , 2018, Geoscientific Model Development.

[15]  C. Brühl,et al.  Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data , 2018, Atmospheric Chemistry and Physics.

[16]  A. Maycock,et al.  Revisiting the Relationship among Metrics of Tropical Expansion , 2018, Journal of Climate.

[17]  A. Robock,et al.  Anticipating future Volcanic Explosivity Index (VEI) 7 eruptions and their chilling impacts , 2018 .

[18]  Gabriele Curci,et al.  Sulfur deposition changes under sulfate geoengineering conditions: quasi-biennial oscillation effects on the transport and lifetime of stratospheric aerosols , 2018 .

[19]  Irene Cionni,et al.  Upper tropospheric ice sensitivity to sulfate geoengineering , 2017, Atmospheric Chemistry and Physics.

[20]  Andrew Gettelman,et al.  Radiative and Chemical Response to Interactive Stratospheric Sulfate Aerosols in Fully Coupled CESM1(WACCM) , 2017 .

[21]  M. Mills,et al.  Stratospheric Dynamical Response and Ozone Feedbacks in the Presence of SO2 Injections , 2017 .

[22]  Hauke Schmidt,et al.  Changing transport processes in the stratosphere by radiative heating of sulfate aerosols , 2017 .

[23]  U. Lohmann,et al.  The chemistry–climate model ECHAM6.3-HAM2.3-MOZ1.0 , 2017 .

[24]  O. Boucher,et al.  The Sectional Stratospheric Sulfate Aerosol module (S3A-v1) within the LMDZ general circulation model: description and evaluation against stratospheric aerosol observations , 2017 .

[25]  James S. A. Brooke,et al.  Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora , 2017 .

[26]  E. Rozanov,et al.  Chemistry-climate model simulations of the Mt. Pinatubo eruption using CCMI and CMIP6 stratospheric aerosol data , 2017 .

[27]  Andrea Stenke,et al.  Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI) , 2017 .

[28]  G. Pitari,et al.  Impact of Stratospheric Volcanic Aerosols on Age-of-Air and Transport of Long-Lived Species , 2016 .

[29]  Fiona Tummon,et al.  The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) : experimental design and forcing input data for CMIP6 , 2016 .

[30]  C. Timmreck,et al.  Stratospheric aerosol—Observations, processes, and impact on climate , 2016 .

[31]  A. Schmidt,et al.  Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM) , 2016 .

[32]  Shingo Watanabe,et al.  The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results , 2015 .

[33]  T. Deshler,et al.  On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements , 2015 .

[34]  M Höpfner,et al.  Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC , 2015, Journal of geophysical research. Atmospheres : JGR.

[35]  J. Sheng,et al.  Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosol‐chemistry‐climate model predictions and validation , 2015 .

[36]  C. Timmreck,et al.  The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure , 2014 .

[37]  G. Mann,et al.  Aerosol microphysics simulations of the Mt.~Pinatubo eruption with the UM-UKCA composition-climate model , 2014 .

[38]  Robert Damadeo,et al.  SAGE version 7.0 algorithm: application to SAGE II , 2013 .

[39]  Veronika Eyring,et al.  Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) Community Simulations in Support of Upcoming Ozone and Climate Assessments , 2013 .

[40]  C. J. Morcrette,et al.  The Met Office Unified Model Global Atmosphere 4 . 0 and JULES Global Land 4 . 0 configurations , 2013 .

[41]  C. Timmreck,et al.  Climate response to the Toba super-eruption: Regional changes , 2012 .

[42]  Luke D. Oman,et al.  Dispersion of the volcanic sulfate cloud from a Mount Pinatubo–like eruption , 2012 .

[43]  C. Timmreck,et al.  The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions , 2011 .

[44]  Martyn P. Chipperfield,et al.  Description and evaluation of GLOMAP-mode: a modal global aerosol microphysics model for the UKCA composition-climate model , 2010 .

[45]  Philip Stier,et al.  Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1) , 2010 .

[46]  C. Timmreck,et al.  The global middle-atmosphere aerosol model MAECHAM5-SAM2: comparison with satellite and in-situ observations , 2010 .

[47]  D. Giannadaki,et al.  Geoscientific Model Development Description and evaluation of GMXe : a new aerosol submodel for global simulations ( v 1 ) , 2010 .

[48]  C. Timmreck,et al.  Initial fate of fine ash and sulfur from large volcanic eruptions , 2009 .

[49]  A. Robock,et al.  Did the Toba volcanic eruption of 74 ka B.P. produce widespread glaciation , 2009 .

[50]  C. Timmreck,et al.  Simulation of the climate impact of Mt. Pinatubo eruption using ECHAM5 – Part 2: Sensitivity to the phase of the QBO and ENSO , 2008 .

[51]  L. Thomason,et al.  SAGE II measurements of stratospheric aerosol properties at non-volcanic levels , 2007 .

[52]  Lennart Bengtsson,et al.  Climatology and Forcing of the Quasi-Biennial Oscillation in the MAECHAM5 Model , 2006 .

[53]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[54]  W. Rose,et al.  Particles in the great Pinatubo volcanic cloud of June 1991: The role of ice , 2004 .

[55]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[56]  J. Liley,et al.  Thirty years of in situ stratospheric aerosol size distribution measurements from Laramie, Wyoming (41°N), using balloon‐borne instruments , 2003 .

[57]  C. Timmreck,et al.  An improved parameterization for sulfuric acid-water nucleation rates for tropospheric and stratospheric conditions , 2002 .

[58]  Alan Robock,et al.  Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. , 2002, Science.

[59]  D. Shindell,et al.  Impact of Future Climate and Emission Changes on Stratospheric Aerosols and Ozone , 2002 .

[60]  C. Timmreck,et al.  Three-dimensional simulation of stratospheric background aerosol: First results of a multiannual general circulation model simulation , 2001 .

[61]  K. Taylor Summarizing multiple aspects of model performance in a single diagram , 2001 .

[62]  C. Timmreck,et al.  A one and half year interactive MA/ECHAM4 simulation of Mount Pinatubo Aerosol , 1999 .

[63]  A. Krueger,et al.  Stratospheric Loading of Sulfur From Explosive Volcanic Eruptions , 1997, The Journal of Geology.

[64]  D. Weisenstein,et al.  A two‐dimensional model of sulfur species and aerosols , 1997 .

[65]  Larry W. Thomason,et al.  Global to microscale evolution of the Pinatubo volcanic aerosol derived from diverse measurements and analyses , 1996 .

[66]  John B. Anderson,et al.  Changes in Antarctic stratospheric aerosol characteristics due to volcanic eruptions as monitored by the Stratospheric Aerosol and Gas Experiment II satellite , 1995 .

[67]  M. McCormick,et al.  Atmospheric effects of the Mt Pinatubo eruption , 1995, Nature.

[68]  Anthony J. Baran,et al.  New application of the operational sounder HIRS in determining a climatology of sulphuric acid aerosol from the Pinatubo eruption , 1994 .

[69]  Craig S. Long,et al.  using the NOAA/AVHRR to study stratospheric aerosol optical thicknesses following the Mt. Pinatubo Eruption , 1994 .

[70]  O. Toon,et al.  Radiatively forced dispersion of the Mt. Pinatubo volcanic cloud and induced temperature perturbations in the stratosphere during the first few months following the eruption , 1994 .

[71]  G. Visconti,et al.  High‐speed civil transport impact: Role of sulfate, nitric acid trihydrate, and ice aerosols studied with a two‐dimensional model including aerosol physics , 1993 .

[72]  Alyn Lambert,et al.  Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS , 1993 .

[73]  Stuart A. Young,et al.  Identification of the Mount Hudson volcanic cloud over SE Australia , 1992 .

[74]  M. T. Osborn,et al.  Preliminary analysis of observations of the Pinatubo volcanic plume with a polarization‐sensitive lidar , 1992 .

[75]  Steven Ryan,et al.  Early lidar observations of the June 1991 Pinatubo eruption plume at Mauna Loa Observatory, Hawaii , 1992 .

[76]  M. P. McCormick,et al.  Stratospheric temperature increases due to Pinatubo aerosols , 1992 .

[77]  M. T. Osborn,et al.  Airborne lidar observations of the Pinatubo volcanic plume , 1992 .

[78]  Arlin J. Krueger,et al.  Global tracking of the SO2 clouds from the June , 1992 .

[79]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[80]  Larry L. Stowe,et al.  Remote sensing of aerosols over the oceans using AVHRR data Theory, practice and applications , 1989 .

[81]  L. E. Mauldin,et al.  Stratospheric Aerosol And Gas Experiment II Instrument: A Functional Description , 1985 .

[82]  J. Rosen The vertical distribution of dust to 30 kilometers , 1964 .