Gas transport properties of MgO filled poly(1-trimethylsilyl-1-propyne) nanocomposites

Magnesium oxide (MgO) nanoparticles were dispersed via solution processing in poly(1-trimethylsilyl-1-propyne) (PTMSP) to form polymer nanocomposites. Transmission electron microscopy was used to determine the extent of particle aggregation in the composites. Both nanocomposite density and CO2, CH4, N2, and H2 permeability were influenced by nanoparticle loading. Nanocomposite densities were markedly lower than predicted by a two phase additive model. For example, in films containing 75 nominal volume percent MgO, the polymer–particle composite density was 68 percent lower than expected based on an additive model. At this loading, gas permeability coefficients were, depending on the gas, 17–50 times higher than in unfilled PTMSP at similar conditions. The changes in permeability with particle content were interpreted in terms of measured changes in gas solubility with particle content and diffusion coefficients calculated from the permeability and solubility data.

[1]  S. Halawy,et al.  Qualitative and Quantitative Assessments of Acid and Base Sites Exposed on Polycrystalline MgO Surfaces: Thermogravimetric, Calorimetric, and in-Situ FTIR Spectroscopic Study Combination , 2004 .

[2]  Alexandre A. Radzig,et al.  Handbook of Physical Quantities , 1997 .

[3]  Anita J. Hill,et al.  Effect of Nanoparticles on Gas Sorption and Transport in Poly(1-trimethylsilyl-1-propyne) , 2003 .

[4]  P. Pfromm The Impact of Physical Aging of Amorphous Glassy Polymers on Gas Separation Membranes , 2006 .

[5]  Benny D. Freeman,et al.  Materials science of membranes for gas and vapor separation , 2006 .

[6]  E. Drioli,et al.  Permeation through a heterogeneous membrane: the effect of the dispersed phase , 1997 .

[7]  Kazukiyo Nagai,et al.  Effects of aging on the gas permeability and solubility in poly(1-trimethylsilyl-1-propyne) membranes synthesized with various catalysts , 1995 .

[8]  I. Lagadic,et al.  Nanoscale metal oxide particles/clusters as chemical reagents. Unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases (sulfur dioxide and carbon dioxide) and pressure dependence , 1996 .

[9]  A. J. Hill,et al.  Ultrapermeable, Reverse-Selective Nanocomposite Membranes , 2002, Science.

[10]  K. Peinemann,et al.  Gas Transport Properties in a Novel Poly(trimethylsilylpropyne) Composite Membrane with Nanosized Organic Filler Trimethylsilylglucose , 2006 .

[11]  Lora G. Toy,et al.  Transport of organic vapors through poly(1-trimethylsilyl-1-propyne) , 1996 .

[12]  B. Freeman,et al.  An automated spring balance for kinetic gravimetric sorption of gases and vapors in polymers , 1998 .

[13]  Benny D. Freeman,et al.  Gas separation using polymer membranes: an overview , 1994 .

[14]  J. H. Kim,et al.  Interaction with Olefins of the Partially Polarized Surface of Silver Nanoparticles Activated by p‐Benzoquinone and Its Implications for Facilitated Olefin Transport , 2007 .

[15]  Roy D. Raharjo,et al.  Gas Permeability, Solubility, and Diffusion Coefficients in 1,2-Polybutadiene Containing Magnesium Oxide , 2008 .

[16]  Donald W. Breck,et al.  Zeolite Molecular Sieves: Structure, Chemistry, and Use , 1974 .

[17]  D. Kemp,et al.  The diffusion time lag in polymer membranes containing adsorptive fillers , 2007 .

[18]  Benny D. Freeman,et al.  Gas transport in TiO2 nanoparticle-filled poly(1-trimethylsilyl-1-propyne) , 2008 .

[19]  V. Bondar,et al.  Gas sorption and characterization of poly(ether‐b‐amide) segmented block copolymers , 1999 .

[20]  William J. Koros,et al.  Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results , 2003 .

[21]  R. Yang Series on chemical engineering , 1997 .

[22]  Anita J. Hill,et al.  Sorption, Transport, and Structural Evidence for Enhanced Free Volume in Poly(4-methyl-2-pentyne)/Fumed Silica Nanocomposite Membranes , 2003 .

[23]  J MEAD,et al.  Mechanical properties of lungs. , 1961, Physiological reviews.

[24]  I. Pinnau,et al.  Nanostructured poly(4-methyl-2-pentyne)/silica hybrid membranes for gas separation☆ , 2002 .

[25]  Benny D. Freeman,et al.  Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes , 1999 .

[26]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[27]  R. M. Barrer,et al.  Heterogeneous membranes: Diffusion in filled rubber , 1963 .

[28]  B. Freeman,et al.  Pure and mixed gas CH4 and n-C4H10 permeability and diffusivity in poly(1-trimethylsilyl-1-propyne) , 2007 .

[29]  Edward L Cussler,et al.  Polydisperse flakes in barrier films , 2004 .

[30]  Y. Ichiraku,et al.  An investigation of the high gas permeability of poly (1-Trimethylsilyl-1-Propyne) , 1987 .

[31]  S. Mullens,et al.  Silica filled poly(1-trimethylsilyl-1-propyne) nanocomposite membranes : Relation between the transport of gases and structural characteristics , 2006 .

[32]  R. Mahajan,et al.  Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials , 2000 .

[33]  Y. J. Kim,et al.  Effect of Plasticizers on the Formation of Silver Nanoparticles in Polymer Electrolyte Membranes for Olefin/Paraffin Separation , 2002 .

[34]  R. Srinivasan,et al.  Elucidating the mechanism (s) of gas transport in poly[1-(trimethylsilyl)-1-propyne] (PTMSP) membranes , 1994 .

[35]  S. Takahashi,et al.  Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: Without chemical coupling to matrix , 2006 .

[36]  Y. Yampolskii Polymeric Gas Separation Membranes , 1993 .

[37]  Rajiv Mahajan,et al.  Mixed matrix membrane materials with glassy polymers. Part 2 , 2002 .

[38]  John Crank,et al.  Diffusion in polymers , 1968 .

[39]  D. Do,et al.  Adsorption analysis : equilibria and kinetics , 1998 .

[40]  S. V. D. Marck PERCOLATION THRESHOLDS OF THE DUALS OF THE FACE-CENTERED-CUBIC, HEXAGONAL-CLOSE-PACKED, AND DIAMOND LATTICES , 1997 .

[41]  Stephen J. Miller,et al.  Mixed matrix membranes using carbon molecular sieves: II. Modeling permeation behavior , 2003 .

[42]  Benny D. Freeman,et al.  Gas solubility, diffusivity and permeability in poly(ethylene oxide) , 2004 .

[43]  B. S. Tanem,et al.  Sample preparation and AFM analysis of heterophase polypropylene systems , 2003 .

[44]  W. Koros,et al.  Sorption and transport of various gases in polycarbonate , 1977 .

[45]  B. Freeman,et al.  Gas permeability, solubility and diffusivity in 1,2-polybutadiene containing brookite nanoparticles , 2008 .

[46]  B. Min,et al.  Facilitated transport of ethylene across polymer membranes containing silver salt: effect of HBF4 on the photoreduction of silver ions , 2003 .

[47]  T. Merkel,et al.  Sorption and transport of hydrocarbon and perfluorocarbon gases in poly(1-trimethylsilyl-1-propyne) , 2000 .

[48]  D. R. Paul,et al.  Effect of film thickness on the changes in gas permeability of a glassy polyarylate due to physical agingPart I. Experimental observations , 2000 .

[49]  J. G. Wijmans,et al.  The Solution–Diffusion Model: A Unified Approach to Membrane Permeation , 2006 .

[50]  K. Nagai,et al.  Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions , 2001 .

[51]  S. A. Stern,et al.  Performance of a versatile variable‐volume permeability cell. Comparison of gas permeability measurements by the variable‐volume and variable‐pressure methods , 1963 .

[52]  Anita J. Hill,et al.  Sorption and Transport in Poly(2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co-tetrafluoroethylene) Containing Nanoscale Fumed Silica , 2003 .

[53]  Donald R Paul,et al.  Gas Sorption and Transport in Glassy Polymers , 1979 .

[54]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .

[55]  J. N. Barsema,et al.  Functionalized Carbon Molecular Sieve membranes containing Ag-nanoclusters , 2003 .

[56]  B. Freeman,et al.  Transport of Gases and Vapors in Glassy and Rubbery Polymers , 2006 .