Size dependence of photoluminescence and resonant Raman scattering from ZnO quantum dots

ZnO quantum dots (QDs) of controlled sizes have been fabricated by a simple sol-gel method. The blueshift of room-temperature photoluminescence measurement from free exciton transition are observed decreasing with the QD size that is ascribed to the quantum confinement effect. From the resonant Raman scattering, the coupling strength between electron and longitudinal optical phonon, deduced from the ratio of the second- to the first-order Raman scattering intensity, diminishes with reducing the ZnO QD diameter. The size dependence of electron-phonon coupling is principally a result of the Frohlich interaction.

[1]  R. Loudon,et al.  The Raman effect in crystals , 1964 .

[2]  Y. Liu,et al.  Resonant Raman scattering and photoluminescence from high-quality nanocrystalline ZnO thin films prepared by thermal oxidation of ZnS thin films , 2001 .

[3]  A. Balandin,et al.  Origin of the optical phonon frequency shifts in ZnO quantum dots , 2005 .

[4]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[5]  J. Scott uv Resonant Raman Scattering in ZnO , 1970 .

[6]  H. Koinuma,et al.  Room-temperature luminescence of excitons in ZnO/(Mg, Zn)O multiple quantum wells on lattice-matched substrates , 2000 .

[7]  Alexander A. Balandin,et al.  Micro-Raman investigation of optical phonons in ZnO nanocrystals , 2005 .

[8]  Gaojie Xu,et al.  Size dependence of electron-phonon coupling in ZnO nanowires , 2004 .

[9]  V. Ursaki,et al.  Photoluminescence and resonant Raman scattering from ZnO-opal structures , 2004 .

[10]  Kun Huang,et al.  Theory of light absorption and non-radiative transitions in F-centres , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  Hsin-Ming Cheng,et al.  Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method , 2005 .

[12]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[13]  Hsin-Ming Cheng,et al.  Enhanced resonant raman scattering and electron-phonon coupling from self-assembled secondary ZnO nanoparticles. , 2005, The journal of physical chemistry. B.

[14]  Myrtil L. Kahn,et al.  Experimental study of LO phonons and excitons in ZnO nanoparticles produced by room-temperature organometallic synthesis , 2006 .

[15]  Bin Chen,et al.  Optical properties of single-crystalline ZnO nanowires on m-sapphire , 2003 .

[16]  I. P. Kaminow,et al.  Quantitative Determination of Sources of the Electro-Optic Effect in LiNbO3and LiTaO3 , 1967 .

[17]  R. T. Senger,et al.  Optical properties of confined polaronic excitons in spherical ionic quantum dots , 2003 .

[18]  H. Koinuma,et al.  Size dependence of exciton–longitudinal-optical-phonon coupling inZnO/Mg0.27Zn0.73Oquantum wells , 2002 .

[19]  A. Balandin,et al.  Origin of ultraviolet photoluminescence in ZnO quantum dots: Confined excitons versus surface-bound impurity exciton complexes , 2004 .

[20]  Lin Guo,et al.  Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties , 2000 .

[21]  Hsin-Ming Cheng,et al.  Raman scattering and efficient UV photoluminescence from well-aligned ZnO nanowires epitaxially grown on GaN buffer layer. , 2005, The journal of physical chemistry. B.