Bionanomaterials and Bioinspired Nanostructures for Selective Vapor Sensing

At present, monitoring of air at the workplace, in urban environments, and on battlefields; exhaled air from medical patients; air in packaged food containers; and so forth can be accomplished with different types of analytical instruments. Vapor sensors have their niche in these measurements when an unobtrusive, low-power, and cost-sensitive technical solution is required. Unfortunately, existing vapor sensors often degrade their vapor-quantitation accuracy in the presence of high levels of interferences and cannot quantitate several components in complex gas mixtures. Thus, new sensing approaches with improved sensor selectivity are required. This technological task can be accomplished by the careful design of sensing materials with new performance properties and by coupling these materials with the suitable physical transducers. This review is focused on the assessment of the capabilities of bionanomaterials and bioinspired nanostructures for selective vapor sensing. We demonstrate that these sensing m...

[1]  V. Mirsky,et al.  Artificial receptors for chemical sensors , 2011 .

[2]  Radislav A Potyrailo,et al.  Wireless resonant sensor array for high-throughput screening of materials. , 2007, The Review of scientific instruments.

[3]  P. Seeberger,et al.  Carbohydrate arrays as tools for research and diagnostics. , 2008, Chemical Society reviews.

[4]  Chad M. Eliason,et al.  Rapid, reversible response of iridescent feather color to ambient humidity. , 2010, Optics express.

[5]  Jungyul Park,et al.  Biologically inspired humidity sensor based on three-dimensional photonic crystals , 2010 .

[6]  Radislav A. Potyrailo,et al.  Morpho butterfly wing scales demonstrate highly selective vapour response , 2007 .

[7]  Cheryl Surman,et al.  Materials and transducers toward selective wireless gas sensing. , 2011, Chemical reviews.

[8]  R. Ruoff,et al.  All-organic vapor sensor using inkjet-printed reduced graphene oxide. , 2010, Angewandte Chemie.

[9]  Tai Hyun Park,et al.  Enhancement of odorant detection sensitivity by the expression of odorant-binding protein. , 2008, Biosensors & bioelectronics.

[10]  Arthur W. Snow,et al.  Colloidal Metal−Insulator−Metal Ensemble Chemiresistor Sensor , 1998 .

[11]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[12]  Charles M. Lieber,et al.  Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology , 1998, Nature.

[13]  D. Restrepo,et al.  Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish. , 1990, Science.

[14]  R. Naik,et al.  Biomimetic chemosensor: designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. , 2010, ACS nano.

[15]  Hsin-Hsien Lu,et al.  Direct characterization and quantification of volatile organic compounds by piezoelectric module chips sensor , 2009 .

[16]  Laura Pirondini,et al.  Molecular recognition at the gas-solid interface: a powerful tool for chemical sensing. , 2007, Chemical Society reviews.

[17]  Jean-Pol Vigneron,et al.  Diffractive hygrochromic effect in the cuticle of the hercules beetle Dynastes hercules , 2008 .

[18]  Tae Song Kim,et al.  Peptide receptor-based selective dinitrotoluene detection using a microcantilever sensor. , 2011, Biosensors & bioelectronics.

[19]  Manuele Bernabei,et al.  Design of a very large chemical sensor system for mimicking biological olfaction , 2010 .

[20]  R. Paolesse,et al.  Piezoelectric sensors for dioxins: a biomimetic approach. , 2004, Biosensors & bioelectronics.

[21]  Tai Hyun Park,et al.  Nanovesicle-based bioelectronic nose platform mimicking human olfactory signal transduction. , 2012, Biosensors & bioelectronics.

[22]  Peng Jiang,et al.  Vapor detection enabled by self-assembled colloidal photonic crystals. , 2012, Journal of colloid and interface science.

[23]  A. Sanghvi,et al.  Biomaterials functionalization using a novel peptide that selectively binds to a conducting polymer , 2005, Nature materials.

[24]  Yue Cui,et al.  Biomimetic peptide nanosensors. , 2012, Accounts of chemical research.

[25]  S. Middelhoek,et al.  Three-dimensional representation of input and output transducers , 1981 .

[26]  Luling Wang,et al.  Fabrication of large-area two-dimensional colloidal crystals. , 2012, Angewandte Chemie.

[27]  Marco Santonico,et al.  A sensor array based on mass and capacitance transducers for the detection of adulterated gasolines , 2009 .

[28]  E. S. Snow,et al.  Chemical Detection with a Single-Walled Carbon Nanotube Capacitor , 2005, Science.

[29]  B. Neto,et al.  Free-grown polypyrrole thin films as aroma sensors , 2003 .

[30]  D. A. Nelson,et al.  Sorptive behavior of monolayer-protected gold nanoparticle films: implications for chemical vapor sensing. , 2003, Analytical chemistry.

[31]  Klaus Finkenzeller,et al.  Book Reviews: RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, 2nd ed. , 2004, ACM Queue.

[32]  Radislav A. Potyrailo,et al.  4.5.1 Multivariable MHz and GHz Wireless Chem/Bio Sensors for Environmental, Industrial, and Security Applications , 2012 .

[33]  I. Sugimoto,et al.  The structures and gas-sorption properties of L-tyrosine films prepared by the Knudsen effusion method , 2009 .

[34]  R. Axel,et al.  A novel multigene family may encode odorant receptors: A molecular basis for odor recognition , 1991, Cell.

[35]  Michael J Sailor,et al.  Smart dust: Self-assembling, self-orienting photonic crystals of porous Si , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  A. Hierlemann,et al.  Effective use of molecular recognition in gas sensing: results from acoustic wave and in situ FT-IR measurements. , 1999, Analytical chemistry.

[37]  B. Hock,et al.  Antibodies for Biosensors , 2004 .

[38]  David R. Walt,et al.  Optical-fiber arrays for vapor sensing , 2009 .

[39]  Gregory A. Bakken,et al.  Computational methods for the analysis of chemical sensor array data from volatile analytes. , 2000, Chemical reviews.

[40]  Tai Hyun Park,et al.  Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. , 2012, Nano letters.

[41]  Andrew A. Burns,et al.  Multivariable passive RFID vapor sensors: roll-to-roll fabrication on a flexible substrate. , 2012, The Analyst.

[42]  R. Potyrailo,et al.  Combinatorial and high-throughput development of sensing materials: the first 10 years. , 2008, Chemical reviews.

[43]  Luc J. Bousse Whole cell biosensors , 1996 .

[44]  Leonard R. MacGillivray,et al.  Metal-organic frameworks : design and application , 2010 .

[45]  D. Stavenga,et al.  Gyroid cuticular structures in butterfly wing scales: biological photonic crystals , 2007, Journal of The Royal Society Interface.

[46]  Sensitivity analysis of a bioinspired refractive index based gas sensor , 2011 .

[47]  Michael C. McAlpine,et al.  Electrical detection of pathogenic bacteria via immobilized antimicrobial peptides , 2010, Proceedings of the National Academy of Sciences.

[48]  Valery A Petrenko,et al.  Phage as a molecular recognition element in biosensors immobilized by physical adsorption. , 2007, Biosensors & bioelectronics.

[49]  Joanna Aizenberg,et al.  Combinatorial wetting in colour: an optofluidic nose. , 2012, Lab on a chip.

[50]  L. Sarkisov Toward Rational Design of Metal−Organic Frameworks for Sensing Applications: Efficient Calculation of Adsorption Characteristics in Zero Loading Regime , 2012 .

[51]  J. Fitch,et al.  Technology Challenges in Responding to Biological or Chemical Attacks in the Civilian Sector , 2003, Science.

[52]  G. C. Frye,et al.  Surface acoustic wave response to changes in viscoelastic film properties , 1990 .

[53]  P. Vukusic,et al.  Spectroscopy on the wing: Naturally inspired SERS substrates for biochemical analysis , 2009, Journal of biophotonics.

[54]  N. Bârsan,et al.  Electronic nose: current status and future trends. , 2008, Chemical reviews.

[55]  R. Paolesse,et al.  Metalloporphyrins based artificial olfactory receptors , 2007 .

[56]  A. Kolmakov,et al.  Evidence of the self-heating effect on surface reactivity and gas sensing of metal oxide nanowire chemiresistors , 2008, Nanotechnology.

[57]  J. Mitrovics,et al.  The detection of evaporating hazardous material released from moving sources using a gas sensor network , 2010 .

[58]  Todd E. Mlsna,et al.  Chemicapacitive Microsensors for Chemical Warfare Agent and Toxic Industrial Chemical Detection , 2006 .

[59]  Zs. Bálint,et al.  Photonic nanoarchitectures occurring in butterfly scales as selective gas/vapor sensors , 2008, Optical Engineering + Applications.

[60]  J. A. Dickson,et al.  Integrated chemical sensors based on carbon black and polymer films using a standard CMOS process and post-processing , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[61]  A. Tanaka,et al.  A theoretical investigation of the conformation changing of dioxins in the binding site of dioxin receptor model; role of absolute hardness–electronegativity activity diagrams for biological activity , 1999 .

[62]  Rongnong Zhou,et al.  AC-impedance-based chemical sensors for organic solvent vapors , 1996 .

[63]  H. Kuwano,et al.  Organic Gas Sorption Characteristics of Plasma-Deposited Amino Acid Films , 1994 .

[64]  R. Naik,et al.  Selective sensing of vapors of similar dielectric constants using peptide-capped gold nanoparticles on individual multivariable transducers. , 2013, The Analyst.

[65]  Jean-Pol Vigneron,et al.  Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera) , 2009, Journal of The Royal Society Interface.

[66]  Radislav A Potyrailo,et al.  Chemical sensors based on micromachined transducers with integrated piezoresistive readout. , 2006, Analytical chemistry.

[67]  Cheryl Surman,et al.  Battery-free radio frequency identification (RFID) sensors for food quality and safety. , 2012, Journal of agricultural and food chemistry.

[68]  K. Kurihara,et al.  Effect of Odorants on Lipid Monolayers from Bovine Olfactory Epithelium , 1972, Nature.

[69]  T. Bein,et al.  Molecular recognition on acoustic wave devices: sorption in chemically anchored zeolite monolayers , 1992 .

[70]  Nikolaos G. Bourbakis,et al.  A Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[71]  Y. Kanno,et al.  Gas sensing by AT-cut quartz crystal oscillator coated with mixed-lipid film , 2007 .

[72]  Peter Alfred Payne,et al.  High-frequency measurements of conducting polymers: development of a new technique for sensing volatile chemicals , 1995 .

[73]  Kenji Yokoyama,et al.  Development of a chemical vapor sensor using piezoelectric quartz crystals with coated unusual lipids , 1997 .

[74]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[75]  Tao Deng,et al.  Selective Chemical Sensing Using Structurally Colored Core-Shell Colloidal Crystal Films , 2008, IEEE Sensors Journal.

[76]  D. D. Stubbs,et al.  Molecular recognition for electronic noses using surface acoustic wave immunoassay sensors , 2002 .

[77]  Tai Hyun Park,et al.  Mimicking the human smell sensing mechanism with an artificial nose platform. , 2012, Biomaterials.

[78]  Huilan Su,et al.  Bioinspired Hierarchical Tin Oxide Scaffolds for Enhanced Gas Sensing Properties , 2012 .

[79]  K. Schulten,et al.  Molecular biomimetics: nanotechnology through biology , 2003, Nature materials.

[80]  Michael C. McAlpine,et al.  Silk‐Based Conformal, Adhesive, Edible Food Sensors , 2012, Advanced materials.

[81]  Younan Xia,et al.  Monodispersed Colloidal Spheres: Old Materials with New Applications , 2000 .

[82]  Jay W Grate,et al.  Hydrogen-bond acidic polymers for chemical vapor sensing. , 2008, Chemical reviews.

[83]  A. R. Othman,et al.  Transient parameters of a coated quartz crystal microbalance sensor for the detection of volatile organic compounds (VOCs) , 2005 .

[84]  E. Zellers,et al.  Model of vapor-induced resistivity changes in gold-thiolate monolayer-protected nanoparticle sensor films. , 2007, Analytical chemistry.

[85]  Andrew R. Parker,et al.  515 million years of structural colour , 2000 .

[86]  Cheryl Surman,et al.  Wireless sensors and sensor networks for homeland security applications. , 2012, Trends in analytical chemistry : TRAC.

[87]  William A. Goddard,et al.  Peptide-nanowire hybrid materials for selective sensing of small molecules. , 2008, Journal of the American Chemical Society.

[88]  M. Shur,et al.  Selective gas sensing with a single pristine graphene transistor. , 2012, Nano letters.

[89]  Lei Chen,et al.  Based on ZigBee wireless sensor network the monitoring system design for chemical production process toxic and harmful gas , 2010, 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering.

[90]  Bing-Joe Hwang,et al.  Recognition of alcohol vapor molecules by simultaneous measurements of resistance changes on polypyrrole-based composite thin films and mass changes on a piezoelectric crystal , 2001 .

[91]  Radislav A Potyrailo,et al.  Multianalyte chemical identification and quantitation using a single radio frequency identification sensor. , 2007, Analytical chemistry.

[92]  D. Filippini,et al.  Surface plasmon resonance chemical sensing on cell phones. , 2012, Angewandte Chemie.

[93]  Michele Suman,et al.  Cavitands at Work: From Molecular Recognition to Supramolecular Sensors , 2004 .

[94]  D. Diamond,et al.  Wireless sensor networks and chemo-/biosensing. , 2008, Chemical reviews.

[95]  Luisa Torsi,et al.  Multi-parameter gas sensors based on organic thin-film-transistors , 2000 .

[96]  C. Van Hoof,et al.  Micropower energy harvesting , 2009, ESSDERC 2009.

[97]  Iwao Sugimoto,et al.  Classification and characterization of atmospheric VOCs based on sorption/desorption behaviors of plasma polymer films , 2007 .

[98]  K. Persaud,et al.  Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose , 1982, Nature.

[99]  Cong Zhao,et al.  Multi‐Model Diagnosis Method for Lung Cancer based on MOS‐SAW Breath Detecting e‐Nose , 2011 .

[100]  M. Bayindir,et al.  Bioinspired Optoelectronic Nose with Nanostructured Wavelength‐Scalable Hollow‐Core Infrared Fibers , 2011, Advanced materials.

[101]  Ten Feizi,et al.  Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions , 2002, Nature Biotechnology.

[102]  Li Yang,et al.  Inkjet Printed, Self Powered, Wireless Sensors for Environmental, Gas, and Authentication-Based Sensing , 2011, IEEE Sensors Journal.

[103]  N. Kasai,et al.  Odorant detection capability of QCR sensors coated with plasma deposited organic films. , 1999, Biosensors & bioelectronics.

[104]  Ye Lu,et al.  DNA-decorated graphene chemical sensors , 2010 .

[105]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[106]  A. Gelperin,et al.  DNA-decorated carbon nanotube-based FETs as ultrasensitive chemical sensors: Discrimination of homologues, structural isomers, and optical isomers , 2012 .

[107]  N. Kasai,et al.  Gas-sorption effects on plasma polymer films characterized by XPS and quartz crystal resonator , 2000 .

[108]  A. Johnson,et al.  DNA-Coated Nanosensors for Breath Analysis , 2010, IEEE Sensors Journal.

[109]  Gunter Hagen,et al.  Planar Zeolite Film-Based Potentiometric Gas Sensors Manufactured by a Combined Thick-Film and Electroplating Technique , 2011, Sensors.

[110]  G. Hicks,et al.  The Enzyme Electrode , 1967, Nature.

[111]  S De Vito,et al.  Wireless Sensor Networks for Distributed Chemical Sensing: Addressing Power Consumption Limits With On-Board Intelligence , 2011, IEEE Sensors Journal.

[112]  Kurt O. Wessendorf,et al.  The Lever oscillator for use in high resistance resonator applications , 1993, 1993 IEEE International Frequency Control Symposium.

[113]  J. Kauer,et al.  Solid-State, Dye-Labeled DNA Detects Volatile Compounds in the Vapor Phase , 2008, PLoS biology.

[114]  Asim K. Ray,et al.  Impedance analysis of the thickness shear mode resonator for organic vapour sensing , 2004 .

[115]  Di Zhang,et al.  Hierarchically porous ZnO with high sensitivity and selectivity to H2S derived from biotemplates , 2009 .

[116]  S. Jayasena Aptamers: an emerging class of molecules that rival antibodies in diagnostics. , 1999, Clinical chemistry.

[117]  A. Hierlemann,et al.  Higher-order Chemical Sensing , 2007 .

[118]  Ugozzoli,et al.  Supramolecular Sensors for the Detection of Alcohols. , 1999, Angewandte Chemie.

[119]  Tai Hyun Park,et al.  A peptide receptor-based bioelectronic nose for the real-time determination of seafood quality. , 2013, Biosensors & bioelectronics.

[120]  T. Paronyan,et al.  Sub-ppt gas detection with pristine graphene , 2012 .

[121]  Heiko Ulmer,et al.  Sensor arrays with only one or several transducer principles? The advantage of hybrid modular systems , 2000 .

[122]  Yoshio Okahata,et al.  Olfactory reception on a multibilayer-coated piezoelectric crystal in a gas phase , 1987 .

[123]  S. Doucet,et al.  Iridescence: a functional perspective , 2009, Journal of The Royal Society Interface.

[124]  Radislav A. Potyrailo,et al.  Selective quantitation of vapors and their mixtures using individual passive multivariable RFID sensors , 2010, 2010 IEEE International Conference on RFID (IEEE RFID 2010).

[125]  C. Hagleitner,et al.  Smart single-chip gas sensor microsystem , 2001, Nature.

[126]  Steve Semancik,et al.  Detecting chemical hazards with temperature-programmed microsensors: overcoming complex analytical problems with multidimensional databases. , 2009, Annual review of analytical chemistry.

[127]  S. Brahim,et al.  Tailoring Gas Sensing Properties of Carbon Nanotubes , 2007 .

[128]  G. Ozin,et al.  Vapor swellable colloidal photonic crystals with pressure tunability , 2005 .

[129]  Peter Friedrich,et al.  Realisation of a calorimetric gas sensor on polyimide foil for applications in aseptic food industry , 2012 .

[130]  Shuichi Kinoshita,et al.  Physics of structural colors , 2008 .

[131]  E. Snow,et al.  Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors. , 2005, Nano letters.

[132]  Chad M. Eliason,et al.  Structural color change following hydration and dehydration of iridescent mourning dove (Zenaida macroura) feathers. , 2011, Zoology.

[133]  Rajesh R Naik,et al.  Peptide-mediated formation of single-wall carbon nanotube composites. , 2006, Nano letters.

[134]  Alan Gelperin,et al.  DNA-decorated carbon nanotubes for chemical sensing. , 2005 .

[135]  Radislav A Potyrailo,et al.  Polymeric sensor materials: toward an alliance of combinatorial and rational design tools? , 2006, Angewandte Chemie.

[136]  M. Klein,et al.  The nature of DNA-base-carbon-nanotube interactions. , 2010, Small.

[137]  Takamichi Nakamoto,et al.  Pegylated lipids as coatings for QCM odor-sensors , 2007 .

[138]  Lee E. Weiss,et al.  Inkjet printed chemical sensor array based on polythiophene conductive polymers , 2007 .

[139]  K. Mikoshiba,et al.  Functional expression of a mammalian odorant receptor. , 1998, Science.

[140]  Jérôme Courbat,et al.  Environmental monitoring with a multisensor platform on polyimide foil , 2012 .

[141]  R. Potyrailo,et al.  Development of radio-frequency identification sensors based on organic electronic sensing materials for selective detection of toxic vapors , 2009 .

[142]  T. Swager,et al.  Conducting-Polymer-Based Chemical Sensors: Transduction Mechanisms , 2007 .

[143]  Tielin Shi,et al.  Using hierarchy architecture of Morpho butterfly scales for chemical sensing: Experiment and modeling , 2011 .

[144]  D. Pribat,et al.  Carbon nanotubes based transistors as gas sensors: State of the art and critical review , 2009 .

[145]  Paul F. Barbara,et al.  Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly , 2000, Nature.

[146]  Jaeyoung Kim,et al.  All-Printed and Roll-to-Roll-Printable 13.56-MHz-Operated 1-bit RF Tag on Plastic Foils , 2010, IEEE Transactions on Electron Devices.

[147]  A. Kummel,et al.  Chemical identification using an impedance sensor based on dispersive charge transport , 2006 .

[148]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[149]  Michael C. McAlpine,et al.  Graphene-based wireless bacteria detection on tooth enamel , 2012, Nature Communications.

[150]  A. Majumdar,et al.  Evolutionary screening of biomimetic coatings for selective detection of explosives. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[151]  T. Z. Wu,et al.  Exploring the recognized bio-mimicry materials for gas sensing. , 2001, Biosensors & bioelectronics.

[152]  Gianluca Piazza,et al.  Nanoenabled microelectromechanical sensor for volatile organic chemical detection , 2009 .

[153]  T. Nakamoto,et al.  Spherical SAW devices with self-assembled lipopolymers for odor-sensing , 2010 .

[154]  Radislav A. Potyrailo,et al.  RFID sensors based on ubiquitous passive 13.56-MHz RFID tags and complex impedance detection , 2009 .

[155]  R. Potyrailo,et al.  Position-independent chemical quantitation with passive 13.56-MHz radio frequency identification (RFID) sensors. , 2008, Talanta.

[156]  Gerhard P. Hancke,et al.  Industrial Wireless Sensor Networks: Challenges, Design Principles, and Technical Approaches , 2009, IEEE Transactions on Industrial Electronics.