External cavity widely tunable quantum cascade laser based hollow waveguide gas sensors for multianalyte detection

Abstract In the study presented here, quantitative detection of ethyl chloride, dichloromethane, and trichloromethane individually and in mixture has been demonstrated using an external cavity broadly tunable quantum cascade laser (EC-QCL) based hollow waveguide gas sensor. The EC-QCL has been characterized by coupling into a FT-IR spectrometer documenting sufficient optical power output across a frequency tuning range from 1297 cm −1 to 1219 cm −1 . Concentrations as low as 4 ppb for ethyl chloride, 7 ppm for dichloromethane, and 11 ppb for trichloromethane were detected during exponential dilution experiments with the EC-QCL precisely tuned to selective absorption frequencies of the Q-branch for each constituent at 1287.25 cm −1 , 1262 cm −1 , and 1220 cm −1 , respectively.

[1]  B. Mizaikoff,et al.  Hollow Waveguide Infrared Spectroscopy and Sensing , 2005 .

[2]  Boris Mizaikoff,et al.  Midinfrared sensors meet nanotechnology: Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides , 2005 .

[3]  J. Lovelock Ionization Methods for the Analysis of Gases and Vapors , 1961 .

[4]  Miles James Weida,et al.  Tunable QC laser opens up mid-IR sensing applications , 2006 .

[5]  Boris Mizaikoff,et al.  Mid-IR fiber-optic sensors. , 2003, Analytical chemistry.

[6]  James A. Harrington,et al.  A Review of IR Transmitting, Hollow Waveguides , 2000 .

[7]  M. Fraser,et al.  Application of quantum cascade lasers to trace gas analysis , 2008 .

[8]  Marcella Giovannini,et al.  Continuous-wave operation of a broadly tunable thermoelectrically cooled external cavity quantum-cascade laser. , 2005, Optics letters.

[9]  Timothy Day,et al.  High-power tunable external cavity quantum cascade laser in the 5-11 micron regime , 2008, SPIE LASE.

[10]  N. Croitoru,et al.  Development and Optimization of a Mid-Infrared Hollow Waveguide Gas Sensor Combined with a Supported Capillary Membrane Sampler , 2003, Applied spectroscopy.

[11]  H. Nozoye Exponential dilution flask , 1978 .

[12]  T. L. Myers,et al.  External cavity quantum cascade laser for quartz tuning fork photoacoustic spectroscopy of broad absorption features. , 2007, Optics letters.

[13]  Marcella Giovannini,et al.  External cavity quantum-cascade laser tunable from 8.2to10.4μm using a gain element with a heterogeneous cascade , 2006 .

[14]  Alexei Tsekoun,et al.  Sub-parts-per-billion level detection of NO2 using room-temperature quantum cascade lasers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Siegfried Wartewig,et al.  IR and Raman Spectroscopy: Fundamental Processing , 2003 .

[16]  Nathan I. Croitoru,et al.  Hollow waveguide infrared gas sensing for biomedical applications , 2003, SPIE BiOS.

[17]  Manu Prasanna,et al.  High-sensitivity detection of TNT , 2006, Proceedings of the National Academy of Sciences.

[18]  Boris Mizaikoff,et al.  Hollow-waveguide gas sensing with room-temperature quantum cascade lasers , 2003 .

[19]  E Gornik,et al.  Spectroscopy in the gas phase with GaAs/AlGaAs quantum-cascade lasers. , 2000, Applied optics.

[20]  Gerard Wysocki,et al.  QEPAS based detection of broadband absorbing molecules using a widely tunable, cw quantum cascade laser at 8.4 mum. , 2007, Optics express.

[21]  Frank K. Tittel,et al.  Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications , 2005 .

[22]  Manijeh Razeghi,et al.  Low-threshold and high power λ∼9.0 μm quantum cascade lasers operating at room temperature , 2000 .