A locally conservative Multiscale Finite Element Method for multiphase flow simulation through heterogeneous and fractured porous media

Abstract A Multiscale Locally Conservative Galerkin (MsLCG) method is proposed to accurately simulate multiphase flow in heterogeneous and fractured porous media. MsLCG employs a coarse partition of the fine grids and multiscale basis function for mapping the fine-scale information to the coarse-scale unknowns. Different from standard Multiscale Finite Element Method (MsFEM), the main improvement of our MsLCG is to use the property of local conservation at steady state conditions to define a numerical flux at element boundaries. MsLCG provides a way to extend standard MsFEM to handle challenging multiphase flow problems in heterogeneous and fractured porous media. MsLCG preserves all the advantages of the standard MsFEM while it provides explicitly conservative fluxes through each element. We present a number of representative numerical examples to demonstrate that our method is efficient and accurate for simulating multiphase flow through heterogeneous and fractured porous media.

[1]  Hussein Hoteit,et al.  An efficient numerical model for incompressible two-phase flow in fractured media , 2008 .

[2]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[3]  Yalchin Efendiev,et al.  Mixed Multiscale Finite Element Methods Using Limited Global Information , 2008, Multiscale Model. Simul..

[4]  H. Tchelepi,et al.  Multi-scale finite-volume method for elliptic problems in subsurface flow simulation , 2003 .

[5]  Yueying Wang,et al.  Accurate multiscale finite element method for numerical simulation of two-phase flow in fractured media using discrete-fracture model , 2013, J. Comput. Phys..

[6]  Hamdi A. Tchelepi,et al.  Adaptive multiscale finite-volume method for nonlinear multiphase transport in heterogeneous formations , 2009, J. Comput. Phys..

[7]  John Killough,et al.  Beyond dual-porosity modeling for the simulation of complex flow mechanisms in shale reservoirs , 2013, Computational Geosciences.

[8]  Hadi Hajibeygi,et al.  Algebraic multiscale method for flow in heterogeneous porous media with embedded discrete fractures (F-AMS) , 2016, J. Comput. Phys..

[9]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[10]  Maria Vasilyeva,et al.  Multiscale model reduction for shale gas transport in a coupled discrete fracture and dual-continuum porous media , 2017 .

[11]  Yalchin Efendiev,et al.  Multiscale model reduction for shale gas transport in fractured media , 2015, Computational Geosciences.

[12]  Olav Møyner,et al.  The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB) , 2016, J. Comput. Phys..

[13]  J. E. Warren,et al.  The Behavior of Naturally Fractured Reservoirs , 1963 .

[14]  Knut-Andreas Lie,et al.  A comparison of multiscale methods for elliptic problems in porous media flow , 2008 .

[15]  Na Zhang,et al.  Structural regeneration of fracture-vug network in naturally fractured vuggy reservoirs , 2017, Journal of Petroleum Science and Engineering.

[16]  P. Nithiarasu A SIMPLE LOCALLY CONSERVATIVE GALERKIN (LCG) FINITE-ELEMENT METHOD FOR TRANSIENT CONSERVATION EQUATIONS , 2004 .

[17]  H. A. Tchelepi,et al.  Discrete fracture model for coupled flow and geomechanics , 2016, Computational Geosciences.

[18]  John Killough,et al.  General Multi-Porosity simulation for fractured reservoir modeling , 2016 .

[19]  Stein Krogstad,et al.  A Hierarchical Multiscale Method for Two-Phase Flow Based upon Mixed Finite Elements and Nonuniform Coarse Grids , 2006, Multiscale Model. Simul..

[20]  Knut-Andreas Lie,et al.  A Multiscale Mixed Finite Element Method for Vuggy and Naturally Fractured Reservoirs , 2010 .

[21]  Haiying Wang,et al.  Locally Conservative Fluxes for the Continuous Galerkin Method , 2007, SIAM J. Numer. Anal..

[22]  Jostein R. Natvig,et al.  Multiscale Mimetic Solvers for Efficient Streamline Simulation of Fractured Reservoirs , 2011 .

[23]  Jun Yao,et al.  Multiscale mixed finite element, discrete fracture–vug model for fluid flow in fractured vuggy porous media , 2016 .

[24]  Zhiming Chen,et al.  A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..

[25]  Hamdi A. Tchelepi,et al.  Multiscale Finite-Volume Formulation for Saturation Equations , 2012 .

[26]  Matthew W. Farthing,et al.  Locally conservative, stabilized finite element methods for variably saturated flow , 2008 .

[27]  G. I. Barenblatt,et al.  Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata] , 1960 .

[28]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[29]  A. Firoozabadi,et al.  Control‐volume method for numerical simulation of two‐phase immiscible flow in two‐ and three‐dimensional discrete‐fractured media , 2004 .

[30]  Yating Wang,et al.  Multiscale mass transfer coupling of triple-continuum and discrete fractures for flow simulation in fractured vuggy porous media , 2018 .

[31]  Mark A. Knackstedt,et al.  Pore scale characterization of carbonates at multiple scales: integration of micro-CT, BSEM and FIBSEM , 2010 .

[32]  Yalchin Efendiev,et al.  Generalized Multiscale Finite Element Methods. Oversampling Strategies , 2013, 1304.4888.

[33]  I. Akkutlu,et al.  Multiscale Gas Transport in Shales With Local Kerogen Heterogeneities , 2012 .

[34]  Na Zhang,et al.  Locally conservative Galerkin and finite volume methods for two-phase flow in porous media , 2013, J. Comput. Phys..

[35]  Milind Deo,et al.  Finite element, discrete‐fracture model for multiphase flow in porous media , 2000 .

[36]  Bicheng Yan,et al.  An efficient method for fractured shale reservoir history matching: The embedded discrete fracture multi-continuum approach , 2016 .

[37]  Qiang Sun,et al.  Aqueous foam stabilized by partially hydrophobic nanoparticles in the presence of surfactant , 2015 .

[38]  Richard E. Ewing,et al.  Multiphysics and Multiscale Methods for Modeling Fluid Flow Through Naturally Fractured Carbonate Karst Reservoirs , 2009 .

[39]  Thomas Y. Hou,et al.  Convergence of a Nonconforming Multiscale Finite Element Method , 2000, SIAM J. Numer. Anal..

[40]  Patrick Jenny,et al.  Adaptive Multiscale Finite-Volume Method for Multiphase Flow and Transport in Porous Media , 2005, Multiscale Model. Simul..