Survey on research and development of on-orbit active debris removal methods

Space debris is growing dramatically with the rapid pace of human exploration of space, which seriously threatens the safety of artificial spacecraft in orbit. Therefore, the active debris removal (ADR) is important. This review aims to review the ADR methods and to advance related research in the future. The current research and development status are clearly demonstrated by mapping knowledge domain and charts. In this paper, the latest research results are classified and summarized in detail from two aspects of space debris capture and removal. The scheme comparison and evaluation of all ADR methods are performed, and the applicable scopes of various methods are summarized. Each ADR method is scored using a cobweb evaluation model based on six indicators. Future development of ADR is discussed to promote further research interest.

[1]  Yizhai Zhang,et al.  A review of space tether in new applications , 2018, Nonlinear Dynamics.

[2]  Gerard Mourou,et al.  ICAN: A novel laser architecture for space debris removal , 2014 .

[3]  Jiyue Si,et al.  Dynamics modeling and simulation of self-collision of tether-net for space debris removal , 2019, Advances in Space Research.

[4]  Guglielmo S. Aglietti,et al.  RemoveDEBRIS: An in-orbit demonstration of technologies for the removal of space debris , 2019, The Aeronautical Journal.

[5]  Waldemar Bauer,et al.  Target selection and comparison of mission design for space debris removal by DLR׳s advanced study group ☆ , 2014 .

[6]  K. Baker,et al.  Removing orbital debris with lasers , 2011, 1110.3835.

[7]  L. Kerstein,et al.  ROGER - Robotic Geostationary Orbit Restorer , 2003 .

[8]  Ou Ma,et al.  Identification of all the inertial parameters of a non-cooperative object in orbit , 2019, Aerospace Science and Technology.

[9]  J. Pearson,et al.  ElectroDynamic Debris Eliminator (EDDE): Design, Operation, and Ground Support , 2010 .

[10]  John F. Berryman,et al.  Analytical Charge Analysis for Two- and Three-Craft Coulomb Formations , 2007 .

[11]  Kazuya Yoshida,et al.  Achievements in space robotics , 2009, IEEE Robotics & Automation Magazine.

[12]  A. Yariv Catching the wave , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  Hirotaka Sawada,et al.  First Solar Power Sail Demonstration by IKAROS , 2010 .

[14]  Mark R. Cutkosky,et al.  Scaling controllable adhesives to grapple floating objects in space , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[15]  Kjetil Wormnes,et al.  Validated simulator for space debris removal with nets and other flexible tethers applications , 2016 .

[16]  Panfeng Huang,et al.  Robust distributed consensus for deployment of Tethered Space Net Robot , 2018, Aerospace Science and Technology.

[17]  Clément Gosselin,et al.  Synthesis and design of a one-degree-of-freedom planar deployable mechanism with a large expansion ratio , 2016 .

[18]  Eberhard Gill,et al.  Contact Dynamics on Net Capturing of Tumbling Space Debris , 2018, Journal of Guidance, Control, and Dynamics.

[19]  Kazuya Yoshida,et al.  Dual arm coordination in space free-flying robot , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[20]  Panfeng Huang,et al.  Dynamics modeling and model selection of space debris removal via the Tethered Space Robot , 2017 .

[21]  Hodei Urrutxua,et al.  A preliminary design procedure for an ion-beam shepherd mission , 2019, Aerospace Science and Technology.

[22]  Michiel Kruijff,et al.  Tethers and debris mitigation , 2001 .

[23]  Farhad Aghili,et al.  Motion and Parameter Estimation of Space Objects Using Laser-Vision Data , 2009 .

[24]  Kanjuro Makihara,et al.  Structural Evaluation for Electrodynamic Tape Tethers Against Hypervelocity Space Debris Impacts , 2018 .

[25]  Michèle Lavagna,et al.  Multibody dynamics driving GNC and system design in tethered nets for active debris removal , 2016 .

[26]  Eberhard Gill,et al.  Review and comparison of active space debris capturing and removal methods , 2016 .

[27]  Zhongyi Chu,et al.  Optimal commands based multi-stage drag de-orbit design for a tethered system during large space debris removal , 2019, Acta Astronautica.

[28]  Samuel B. Wilson,et al.  DARPA Orbital Express program: effecting a revolution in space-based systems , 2000, SPIE Optics + Photonics.

[29]  Noriyasu Inaba,et al.  Autonomous satellite capture by a space robot: world first on-orbit experiment on a Japanese robot satellite ETS-VII , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[30]  Mica Grujicic,et al.  Hypervelocity impact resistance of reinforced carbon–carbon/carbon–foam thermal protection systems , 2006 .

[31]  Ou Ma,et al.  A review of space robotics technologies for on-orbit servicing , 2014 .

[32]  S. Chiu Promoting international co-operation in the age of global space governance – A study on on-orbit servicing operations , 2019, Acta Astronautica.

[33]  Kim M. Aaron,et al.  Gossamer Orbit Lowering Device (GOLD) for Safe and Efficient De-orbit , 2010 .

[34]  Satomi Kawamoto,et al.  Precise numerical simulations of electrodynamic tethers for an active debris removal system , 2006 .

[35]  Jinguo Liu,et al.  Adaptive robust decoupling control of multi-arm space robots using time-delay estimation technique , 2020, Nonlinear Dynamics.

[36]  Jurek Z. Sasiadek,et al.  Satellite angular motion classification for active on-orbit debris removal using robots , 2019, Aircraft Engineering and Aerospace Technology.

[37]  Panfeng Huang,et al.  Attitude control of towed space debris using only tether , 2017 .

[38]  Raoul-Amadeus Lorbeer,et al.  Momentum predictability and heat accumulation in laser-based space debris removal , 2018, Optical Engineering.

[39]  Hui Li,et al.  A novel space target-tracking method based on generalized Gaussian distribution for on-orbit maintenance robot in Tiangong-2 space laboratory , 2019, Science China Technological Sciences.

[40]  Suming Tang,et al.  High dynamic range three-dimensional shape reconstruction via an auto-exposure-based structured light technique , 2019 .

[41]  James P. Reilly,et al.  ORION: clearing near-Earth space debris in two years using a 30-kW repetitively-pulsed laser , 1997, International Symposium on High Power Laser Systems and Applications.

[42]  Shin-ichiro Nishida,et al.  Strategy for capturing of a tumbling space debris , 2011 .

[43]  Christian Hühne,et al.  Deployment Testing of the De-Orbit Sail Flight Hardware , 2015 .

[44]  Yingwu Fang,et al.  Effects of deorbit evolution on space-based pulse laser irradiating centimeter-scale space debris in LEO , 2019 .

[45]  Willem H. Steyn,et al.  CubeSail: A low cost CubeSat based solar sail demonstration mission , 2011 .

[46]  Toralf Boge,et al.  Flight Dynamics Challenges of the German On-Orbit Servicing Mission DEOS , 2009 .

[47]  Xin Zhang,et al.  Effective motion planning strategy for space robot capturing targets under consideration of the berth position , 2018, Acta Astronautica.

[48]  Santosh Kosambe Mission Shakti aka Project XSV-1: India’s First Anti-Satellite Test (ASAT) , 2019, Journal of Aircraft and Spacecraft Technology.

[49]  Craig Underwood,et al.  InflateSail de-orbit flight demonstration results and follow-on drag-sail applications , 2019, Acta Astronautica.

[50]  Martin Kassebom ROGER - An Advanced Solution for a Geostationary Service Satellite , 2003 .

[51]  Zhenyuan Tang,et al.  Experimental and numerical analysis of the heat flux characteristic of the plume of a 120-N thruster , 2019, Science China Technological Sciences.

[52]  Zheng H. Zhu,et al.  Long-Term Libration Dynamics and Stability Analysis of Electrodynamic Tethers in Spacecraft Deorbit , 2014 .

[53]  Joyeeta Chatterjee,et al.  Legal Issues Relating to Unauthorised Space Debris Remediation , 2014 .

[54]  Jason L. Forshaw,et al.  Final Payload Test Results for the RemoveDebris Active Debris Removal Mission , 2016 .

[55]  Zhongyi Chu,et al.  Inertial parameter identification using contact force information for an unknown object captured by a space manipulator , 2017 .

[56]  H. Eckel,et al.  Space debris removal by ground-based lasers: main conclusions of the European project CLEANSPACE. , 2014, Applied optics.

[57]  F. Cichocki,et al.  Electric Propulsion Subsystem Optimization for “Ion Beam Shepherd” Missions , 2017 .

[58]  Mitsushige Oda Experiences and lessons learned from the ETS-VII robot satellite , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[59]  V. Shuvalov,et al.  Drag on a spacecraft produced by the interaction of its magnetic field with the Earth's ionosphere. Physical modelling , 2020 .

[60]  Richard C Wilde,et al.  One hundred US EVAs: a perspective on spacewalks. , 2002, Acta astronautica.

[61]  Andrew Viquerat,et al.  A modular drag-deorbiting sail for large satellites in low Earth orbit , 2020 .

[62]  Yiwei Liu,et al.  A review of the end-effector of large space manipulator with capabilities of misalignment tolerance and soft capture , 2016 .

[63]  C. Bombardelli,et al.  Ion Beam Shepherd for Contactless Space Debris Removal , 2011, 1102.1289.

[64]  V. Aslanov,et al.  Motion Control of Space Tug During Debris Removal by a Coulomb Force , 2018, Journal of Guidance, Control, and Dynamics.

[65]  C. Charles,et al.  Demonstrating a new technology for space debris removal using a bi-directional plasma thruster , 2018, Scientific Reports.

[66]  S. Khoroshylov Out-of-plane relative control of an ion beam shepherd satellite using yaw attitude deviations , 2019, Acta Astronautica.

[67]  Yili Zheng,et al.  Mechanical design and analysis of a gripper for non-cooperative target capture in space , 2018, Advances in Mechanical Engineering.

[68]  Ahmed A. Shabana,et al.  Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation , 2005 .

[69]  Eric Joffre,et al.  RemoveDEBRIS: An in-orbit active debris removal demonstration mission , 2016 .

[70]  Kui Sun,et al.  Design of a novel deployable mechanism for capturing tumbling debris , 2019, Transactions of the Canadian Society for Mechanical Engineering.

[71]  Fabio Santoni,et al.  Expanded polyurethane foam for active debris removal , 2014 .

[72]  N. Johnson,et al.  Characterization of the cataloged Fengyun-1C fragments and their long-term effect on the LEO environment , 2009 .

[73]  Guanhua Feng,et al.  Geomagnetic Energy Approach to Space Debris Deorbiting in a Low Earth Orbit , 2019, International Journal of Aerospace Engineering.

[74]  Antonios Tsourdos,et al.  Attitude control analysis of tethered de-orbiting , 2018 .

[75]  Jintai Chung,et al.  Removal of captured space debris using a tethered satellite system , 2019, Journal of Mechanical Science and Technology.

[77]  Panfeng Huang,et al.  Stability control of a flexible maneuverable tethered space net robot , 2018 .

[78]  Ye Yan,et al.  Bionics design and dynamics analysis of space webs based on spider predation , 2019 .

[79]  S. Scharring,et al.  Heat Accumulation in Laser-Based Removal of Space Debris , 2018, AIAA Journal.

[80]  Claudio Bombardelli,et al.  ION BEAM SHEPHERD SATELLITE FOR SPACE DEBRIS REMOVAL , 2013 .

[81]  Xin Sun,et al.  Switched propulsion force libration control for the low-thrust space tug system , 2018 .

[82]  Surekha Kamath,et al.  Review of Active Space Debris Removal Methods , 2019, Space Policy.

[83]  Satomi Kawamoto,et al.  Study on electrodynamic tether system for space debris removal , 2004 .

[84]  Jeremy Straub,et al.  Analysis of a space debris laser removal system , 2017, Defense + Security.

[85]  X. Ji,et al.  Effect of spatial coherence on laser space-debris removal in the inhomogeneous atmosphere , 2019, Journal of Quantitative Spectroscopy and Radiative Transfer.

[86]  Zongyu Zuo,et al.  Active Debris Removal Using Double-Tethered Space-Tug System , 2017 .

[87]  John Bellardo,et al.  Orbit and Attitude Performance of the LightSail 2 Solar Sail Spacecraft , 2020 .

[88]  Ming Zeng,et al.  Dynamics and control of a tethered space-tug system using Takagi-Sugeno fuzzy methods , 2019, Aerospace Science and Technology.

[89]  Qingyu Gao,et al.  Study on launch scheme of space-net capturing system , 2017, PloS one.

[90]  Nicolas Bérend,et al.  Bi-objective optimization of a multiple-target active debris removal mission , 2016 .

[91]  Alessandro Chiesa,et al.  Enabling Technologies for Active Space Debris Removal: The Cadet Project , 2015 .

[92]  Shan Lu,et al.  Optimal control scheme of space tethered system for space debris deorbit , 2019 .

[93]  Bin Liang,et al.  Modeling and planning of a space robot for capturing tumbling target by approaching the Dynamic Closest Point , 2019, Multibody System Dynamics.

[94]  M. Andrenucci,et al.  Low-thrust Missions for Expanding Foam Space Debris Removal , 2011 .

[95]  D. F. Moorer,et al.  Geosynchronous Large Debris Reorbiter: Challenges and Prospects , 2012 .

[96]  J.-C. Liou,et al.  Controlling the growth of future LEO debris populations with active debris removal , 2010 .

[97]  Fan Zhang,et al.  Contact Dynamics and Control for Tethered Space Net Robot , 2019, IEEE Transactions on Aerospace and Electronic Systems.

[98]  M. Reza Emami,et al.  Assessment of active methods for removal of LEO debris , 2018 .

[99]  Eberhard Gill,et al.  Deployment dynamics of tethered-net for space debris removal , 2017 .

[100]  Riccardo Bevilacqua,et al.  An optimized analytical solution for geostationary debris removal using solar sails , 2019 .

[101]  Tohru Suzuki,et al.  Results of the ETS-7 Mission - Rendezvous Docking and Space Robotics Experiments , 1999 .

[102]  Jason L. Forshaw,et al.  The RemoveDebris ADR Mission: Preparing for an International Space Station Launch , 2017 .

[103]  Brett Kennedy,et al.  ON-OFF Adhesive Grippers for Earth-Orbit , 2013 .

[104]  Clément Gosselin,et al.  A deployable mechanism concept for the collection of small-to-medium-size space debris , 2017 .

[105]  Kazuya Yoshida,et al.  The TAKO (Target Collaborativize)-Flyer : a New Concept for Future Satellite Servicing , 2002 .

[106]  J.-C. Liou,et al.  The 2019 U.S. Government Orbital Debris Mitigation Standard Practices , 2020 .

[107]  Wenfu Xu,et al.  Avoidance of multiple moving obstacles during active debris removal using a redundant space manipulator , 2017 .

[108]  Christophe Bonnal,et al.  Active debris removal: Recent progress and current trends , 2013 .

[109]  Zheng Huang,et al.  Ground-based experiment of capturing space debris based on artificial potential field , 2018, Acta Astronautica.

[110]  François Chaumette,et al.  The active space debris removal mission RemoveDebris. Part 1: From concept to launch , 2020, Acta Astronautica.

[111]  Panfeng Huang,et al.  Postcapture robust nonlinear control for tethered space robot with constraints on actuator and velocity of space tether , 2017 .

[112]  Max Calabro,et al.  XXI century tower: Laser orbital debris removal and collision avoidance , 2019 .

[113]  Chong Sun,et al.  Adaptive space debris capture approach based on origami principle , 2019, International Journal of Advanced Robotic Systems.

[114]  Inna Sharf,et al.  Simulation of tether-nets for capture of space debris and small asteroids , 2019, Acta Astronautica.

[115]  Jinguo Liu,et al.  Development of a Novel End-Effector for an On-Orbit Robotic Refueling Mission , 2020, IEEE Access.

[116]  Panfeng Huang,et al.  Attitude control for tethered towing debris under actuators and dynamics uncertainty , 2019, Advances in Space Research.

[117]  C. Bombardelli,et al.  Ion Beam Shepherd for Asteroid Deflection , 2011, 1102.1276.

[118]  Zhongyi Chu,et al.  Hybrid tension control method for tethered satellite systems during large tumbling space debris removal , 2018, Acta Astronautica.

[119]  Noboru Takeichi,et al.  Practical Operation Strategy for Deorbit of an Electrodynamic Tethered System , 2006 .

[120]  Bohumil Doboš,et al.  To Clear or to Eliminate? Active Debris Removal Systems as Antisatellite Weapons , 2019, Space Policy.

[121]  Ian D. Walker,et al.  Field trials and testing of the OctArm continuum manipulator , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[122]  Nicholas L. Johnson,et al.  History of on-orbit satellite fragmentations , 1984 .

[123]  F. Cichocki,et al.  Spacecraft-plasma-debris interaction in an ion beam shepherd mission , 2018 .

[124]  Aki Mikkola,et al.  A Non-Incremental Finite Element Procedure for the Analysis of Large Deformation of Plates and Shells in Mechanical System Applications , 2003 .

[125]  Víctor Lanchares,et al.  Attitude stabilization of electrodynamic tethers in elliptic orbits by time-delay feedback control , 2014 .

[126]  Colin R. McInnes,et al.  Hybrid solar sail and SEP propulsion for novel Earth observation missions , 2011 .

[127]  Xin Zhang,et al.  Survey on research and development of reconfigurable modular robots , 2016 .

[128]  Panfeng Huang,et al.  Dynamic modeling and Super-Twisting Sliding Mode Control for Tethered Space Robot , 2018 .

[129]  Byungkyu Kim,et al.  Articulated linkage arms based reliable capture device for janitor satellites , 2019, Acta Astronautica.

[130]  V. Obukhov,et al.  Radio frequency source of a weakly expanding wedge-shaped xenon ion beam for contactless removal of large-sized space debris objects. , 2017, The Review of scientific instruments.

[131]  Joseph N. Pelton On-Orbit Servicing and Retrofitting , 2015 .

[132]  Stefano Mauro,et al.  Fault-tolerant feature-based estimation of space debris rotational motion during active removal missions , 2018 .

[133]  V. Aslanov,et al.  Evolution of space tethered system’s orbit during space debris towing taking into account the atmosphere influence , 2019, Nonlinear Dynamics.

[134]  Marco Marcon,et al.  Validation results of satellite mock-up capturing experiment using nets , 2017 .

[135]  François Chaumette,et al.  The active space debris removal mission RemoveDebris. Part 2: In orbit operations , 2020, Acta Astronautica.

[136]  G. Parker,et al.  Study of Interspacecraft Coulomb Forces and Implications for Formation Flying , 2003 .

[137]  Jun Yang,et al.  Brief review on pulse laser propulsion , 2018 .

[138]  Lei Yan,et al.  Dual-arm coordinated capturing of an unknown tumbling target based on efficient parameters estimation , 2019, Acta Astronautica.

[139]  Qiang Huang,et al.  Whole-body compliance for multi-arm space robotic capturing of large tumbling target in connection compliant phase , 2018 .

[140]  Panfeng Huang,et al.  Approaching control for tethered space robot based on disturbance observer using super twisting law , 2018 .

[141]  D. Kessler,et al.  Collision frequency of artificial satellites: The creation of a debris belt , 1978 .

[142]  Khanh Pham,et al.  On-Orbit Identification of Inertia Properties of Spacecraft Using a Robotic Arm , 2008 .

[143]  Jascha Wilken,et al.  Laser-based removal of irregularly shaped space debris , 2016 .

[144]  Marco Pavone,et al.  Robust capture and deorbit of rocket body debris using controllable dry adhesion , 2017, 2017 IEEE Aerospace Conference.

[145]  Xin Zhang,et al.  Effective Capture of Nongraspable Objects for Space Robots Using Geometric Cage Pairs , 2020, IEEE/ASME Transactions on Mechatronics.

[146]  Chris Palmer Space Trash Removal , 2019 .

[147]  S. Bondarenko,et al.  Prospects of Using Lasers and Military Space Technology for Space Debris Removal , 1997 .

[148]  Guglielmo S. Aglietti,et al.  Mechanical Development of a Novel Inflatable and Rigidizable Structure , 2016 .

[149]  J.-C. Liou,et al.  A sensitivity study of the effectiveness of active debris removal in LEO , 2009 .

[150]  Fredrik Sjöberg,et al.  SMART-OLEV—An orbital life extension vehicle for servicing commercial spacecrafts in GEO , 2008 .

[151]  Christophe Paccolat,et al.  Mission Design and GNC for In-Orbit Demonstration of Active Debris Removal Technologies with CubeSats , 2017 .

[152]  R. Erwin,et al.  TugSat: Removing Space Debris from Geostationary Orbits Using Solar Sails , 2018 .

[153]  M. L. Cosmo,et al.  Tethers in Space Handbook , 1997 .

[154]  Shin-ichiro Nishida,et al.  Space debris removal system using a small satellite , 2006 .

[155]  Zheng H. Zhu,et al.  Dynamics and control of de-spinning giant asteroids by small tethered spacecraft , 2019, Aerospace Science and Technology.

[156]  Fan Zhang,et al.  Releasing Dynamics and Stability Control of Maneuverable Tethered Space Net , 2017, IEEE/ASME Transactions on Mechatronics.