Pure virtual braids, resonance, and formality
暂无分享,去创建一个
[1] Alexander I. Suciu,et al. The Pure Braid Groups and Their Relatives , 2016, 1602.05291.
[2] Andrew J. Nicas,et al. The center of the virtual braid group is trivial , 2014 .
[3] D. Bar-Natan,et al. Finite-type invariants of w-knotted objects, I: w-knots and the Alexander polynomial , 2014, 1405.1956.
[4] Daniel C. Cohen,et al. CHEN RANKS AND RESONANCE , 2013, 1312.3652.
[5] T. Weigel. Graded Lie algebras of type FP , 2013, 1305.6118.
[6] V. Bardakov,et al. Groups of virtual and welded links , 2012, 1204.3205.
[7] Alexander I. Suciu. Resonance varieties and Dwyer-Fried invariants , 2011, 1111.4534.
[8] Peter Lee. The pure virtual braid group is quadratic , 2011, 1110.2356.
[9] V. Bardakov,et al. On the Pure Virtual Braid Group PV3 , 2009, 0906.1743.
[10] Alexander I. Suciu,et al. Topology and geometry of cohomology jump loci , 2009, 0902.1250.
[11] Alexander I. Suciu,et al. Bieri–Neumann–Strebel–Renz invariants and homology jumping loci , 2008, 0812.2660.
[12] P. Bellingeri,et al. Combinatorial properties of virtual braids , 2006, math/0609563.
[13] E. Rains,et al. Groups and Lie algebras corresponding to the Yang–Baxter equations , 2005, math/0509661.
[14] Alexander I. Suciu,et al. Algebraic invariants for right-angled Artin groups , 2004, math/0412520.
[15] L. Kauffman,et al. Virtual Braids , 2004, math/0407349.
[16] V. Bardakov. The virtual and universal braids , 2004, math/0407400.
[17] Alexander I. Suciu,et al. Chen Lie algebras , 2003, math/0307087.
[18] Alexander I. Suciu. Fundamental groups of line arrangements: Enumerative aspects , 2000, math/0010105.
[19] S. Papadima,et al. On rational K[π,1] spaces and Koszul algebras , 1999 .
[20] Alexander I. Suciu,et al. Cohomology rings and nilpotent quotients of real and complex arrangements , 1998, math/9812087.
[21] L. Kauffman. Virtual Knot Theory , 1998, Eur. J. Comb..
[22] M. Polyak,et al. Finite Type Invariants of Classical and Virtual Knots , 1998, math/9810073.
[23] Daniel C. Cohen,et al. Characteristic varieties of arrangements , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.
[24] Daniel C. Cohen,et al. ALEXANDER INVARIANTS OF COMPLEX HYPERPLANE ARRANGEMENTS , 1997, alg-geom/9703030.
[25] R. Bezrukavnikov. Koszul DG-algebras arising from configuration spaces , 1994 .
[26] D. Anick. Inert sets and the Lie algebra associated to a group , 1987 .
[27] W. Massey,et al. ON A CONJECTURE OF K. MURASUGI , 1986 .
[28] R. Randell,et al. The lower central series of a fiber-type arrangement , 1985 .
[29] Toshitake Kohno,et al. On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces , 1983, Nagoya Mathematical Journal.
[30] W. Massey. Completion of link modules , 1980 .
[31] Dennis Sullivan,et al. Infinitesimal computations in topology , 1977 .
[32] D. Sullivan,et al. Real homotopy theory of Kähler manifolds , 1975 .
[33] D. Quillen,et al. On the associated graded ring of a group ring , 1968 .
[34] Kuo-Tsai Chen,et al. Integration in Free Groups , 1951 .
[35] K. Hess. Rational homotopy theory , 2011 .
[36] A. Pach,et al. ON A CONJECTURE OF K , 2006 .
[37] C. Rourke,et al. Braid presentation of virtual knots and welded knots , 2000 .
[38] Daniel C. Cohen,et al. The Chen Groups of the Pure Braid Group , 1995 .
[39] R. Randell,et al. Pure braid groups and products of free groups , 1986 .
[40] 河野 俊丈. Serie de Poincare-Koszul associee aux groupes de tresses pures , 1985 .
[41] J. Labute. The determination of the Lie algebra associated to the lower central series of a group , 1985 .