Pure virtual braids, resonance, and formality

[1]  Alexander I. Suciu,et al.  The Pure Braid Groups and Their Relatives , 2016, 1602.05291.

[2]  Andrew J. Nicas,et al.  The center of the virtual braid group is trivial , 2014 .

[3]  D. Bar-Natan,et al.  Finite-type invariants of w-knotted objects, I: w-knots and the Alexander polynomial , 2014, 1405.1956.

[4]  Daniel C. Cohen,et al.  CHEN RANKS AND RESONANCE , 2013, 1312.3652.

[5]  T. Weigel Graded Lie algebras of type FP , 2013, 1305.6118.

[6]  V. Bardakov,et al.  Groups of virtual and welded links , 2012, 1204.3205.

[7]  Alexander I. Suciu Resonance varieties and Dwyer-Fried invariants , 2011, 1111.4534.

[8]  Peter Lee The pure virtual braid group is quadratic , 2011, 1110.2356.

[9]  V. Bardakov,et al.  On the Pure Virtual Braid Group PV3 , 2009, 0906.1743.

[10]  Alexander I. Suciu,et al.  Topology and geometry of cohomology jump loci , 2009, 0902.1250.

[11]  Alexander I. Suciu,et al.  Bieri–Neumann–Strebel–Renz invariants and homology jumping loci , 2008, 0812.2660.

[12]  P. Bellingeri,et al.  Combinatorial properties of virtual braids , 2006, math/0609563.

[13]  E. Rains,et al.  Groups and Lie algebras corresponding to the Yang–Baxter equations , 2005, math/0509661.

[14]  Alexander I. Suciu,et al.  Algebraic invariants for right-angled Artin groups , 2004, math/0412520.

[15]  L. Kauffman,et al.  Virtual Braids , 2004, math/0407349.

[16]  V. Bardakov The virtual and universal braids , 2004, math/0407400.

[17]  Alexander I. Suciu,et al.  Chen Lie algebras , 2003, math/0307087.

[18]  Alexander I. Suciu Fundamental groups of line arrangements: Enumerative aspects , 2000, math/0010105.

[19]  S. Papadima,et al.  On rational K[π,1] spaces and Koszul algebras , 1999 .

[20]  Alexander I. Suciu,et al.  Cohomology rings and nilpotent quotients of real and complex arrangements , 1998, math/9812087.

[21]  L. Kauffman Virtual Knot Theory , 1998, Eur. J. Comb..

[22]  M. Polyak,et al.  Finite Type Invariants of Classical and Virtual Knots , 1998, math/9810073.

[23]  Daniel C. Cohen,et al.  Characteristic varieties of arrangements , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  Daniel C. Cohen,et al.  ALEXANDER INVARIANTS OF COMPLEX HYPERPLANE ARRANGEMENTS , 1997, alg-geom/9703030.

[25]  R. Bezrukavnikov Koszul DG-algebras arising from configuration spaces , 1994 .

[26]  D. Anick Inert sets and the Lie algebra associated to a group , 1987 .

[27]  W. Massey,et al.  ON A CONJECTURE OF K. MURASUGI , 1986 .

[28]  R. Randell,et al.  The lower central series of a fiber-type arrangement , 1985 .

[29]  Toshitake Kohno,et al.  On the holonomy Lie algebra and the nilpotent completion of the fundamental group of the complement of hypersurfaces , 1983, Nagoya Mathematical Journal.

[30]  W. Massey Completion of link modules , 1980 .

[31]  Dennis Sullivan,et al.  Infinitesimal computations in topology , 1977 .

[32]  D. Sullivan,et al.  Real homotopy theory of Kähler manifolds , 1975 .

[33]  D. Quillen,et al.  On the associated graded ring of a group ring , 1968 .

[34]  Kuo-Tsai Chen,et al.  Integration in Free Groups , 1951 .

[35]  K. Hess Rational homotopy theory , 2011 .

[36]  A. Pach,et al.  ON A CONJECTURE OF K , 2006 .

[37]  C. Rourke,et al.  Braid presentation of virtual knots and welded knots , 2000 .

[38]  Daniel C. Cohen,et al.  The Chen Groups of the Pure Braid Group , 1995 .

[39]  R. Randell,et al.  Pure braid groups and products of free groups , 1986 .

[40]  河野 俊丈 Serie de Poincare-Koszul associee aux groupes de tresses pures , 1985 .

[41]  J. Labute The determination of the Lie algebra associated to the lower central series of a group , 1985 .