How to regularize a difference of convex functions

Abstract Given a nonconvex function f defined as the difference of two convex functions g and h ( f is a so-called d.c. function), we study the regularized (or smoothed) version f r = g □ r 2 ∥ · ∥ 2 − h □ r 2 ∥ · ∥ 2 of f obtained by performing the infimal convolution of both component functions g and h by the same kernel function r 2 ∥ · ∥ 2 . Critical points of f r and f are compared and the behavior of critical points of f r as r → + ∞ is considered. To a great extent the nice properties of the regularization process ϑ → ϑ □ r 2 ∥ · ∥ 2 when applied to convex functions ϑ are preserved for the process f → f r when performed on d.c. functions f .

[1]  Weak and Strong Solutions of Dual Problems , 1971 .

[2]  J. Aubin,et al.  L'analyse non linéaire et ses motivations économiques , 1984 .

[3]  J. Toland A duality principle for non-convex optimisation and the calculus of variations , 1979 .

[4]  J.-B. Hiriart-Urruty,et al.  From Convex Optimization to Nonconvex Optimization. Necessary and Sufficient Conditions for Global Optimality , 1989 .

[5]  Roger J.-B. Wets,et al.  ISOMETRIES FOR THE LEGENDRE-FENCHEL TRANSFORM , 1986 .

[6]  P. Laurent Approximation et optimisation , 1972 .

[7]  J. Toland Duality in nonconvex optimization , 1978 .

[8]  I. Ekeland,et al.  Infinite-Dimensional Optimization And Convexity , 1983 .

[9]  Enrique Fernández-Cara,et al.  Critical point approximation through exact regularization , 1988 .

[10]  H. Attouch Variational convergence for functions and operators , 1984 .

[11]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[12]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[13]  P. Lions,et al.  A remark on regularization in Hilbert spaces , 1986 .

[14]  Pham Dinh Tao,et al.  Duality in D.C. (Difference of Convex functions) Optimization. Subgradient Methods , 1988 .

[15]  J. Hiriart-Urruty Lipschitz $r$-continuity of the approximative subdifferential of a convex function. , 1980 .

[16]  J. Hiriart-Urruty Generalized Differentiability / Duality and Optimization for Problems Dealing with Differences of Convex Functions , 1985 .