Repeated 5-day cycles of low dose aldesleukin in amyotrophic lateral sclerosis (IMODALS): A phase 2a randomised, double-blind, placebo-controlled trial

[1]  R. Dana,et al.  Low-Dose IL-2 Therapy in Transplantation, Autoimmunity, and Inflammatory Diseases , 2019, The Journal of Immunology.

[2]  P. van Damme,et al.  Inflammatory markers in cerebrospinal fluid: independent prognostic biomarkers in amyotrophic lateral sclerosis? , 2019, Journal of Neurology, Neurosurgery, and Psychiatry.

[3]  N. Shukla,et al.  Attributes of alternatively activated (M2) macrophages. , 2019, Life sciences.

[4]  K. Blennow,et al.  Comparison of plasma and cerebrospinal fluid neurofilament light in a multiple sclerosis trial , 2019, Acta neurologica Scandinavica.

[5]  A. Chiò,et al.  Revised Airlie House consensus guidelines for design and implementation of ALS clinical trials , 2019, Neurology.

[6]  S. Appel,et al.  Neuroinflammatory mechanisms in amyotrophic lateral sclerosis pathogenesis , 2018, Current opinion in neurology.

[7]  I. Jericó,et al.  Evaluation of Chitotriosidase and CC-Chemokine Ligand 18 as Biomarkers of Microglia Activation in Amyotrophic Lateral Sclerosis , 2018, Neurodegenerative Diseases.

[8]  K. Blennow,et al.  Plasma neurofilament light chain levels in patients with MS switching from injectable therapies to fingolimod , 2018, Multiple sclerosis.

[9]  G. Stewart,et al.  Association of Regulatory T-Cell Expansion With Progression of Amyotrophic Lateral Sclerosis: A Study of Humans and a Transgenic Mouse Model , 2018, JAMA neurology.

[10]  M. Cudkowicz,et al.  Expanded autologous regulatory T-lymphocyte infusions in ALS , 2018, Neurology: Neuroimmunology & Neuroinflammation.

[11]  E. Mazzon,et al.  The Role of Macrophages in Neuroinflammatory and Neurodegenerative Pathways of Alzheimer’s Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis: Pathogenetic Cellular Effectors and Potential Therapeutic Targets , 2018, International journal of molecular sciences.

[12]  C. Dardis,et al.  Immune Modulation in the Treatment of Amyotrophic Lateral Sclerosis: A Review of Clinical Trials , 2017, Front. Neurol..

[13]  D. Schoenfeld,et al.  Global rank tests for multiple, possibly censored, outcomes , 2016, Biometrics.

[14]  K. Blennow,et al.  Plasma Concentration of the Neurofilament Light Protein (NFL) is a Biomarker of CNS Injury in HIV Infection: A Cross-Sectional Study , 2015, EBioMedicine.

[15]  M. Heikenwalder,et al.  CCL2-CCR2 Signaling in Disease Pathogenesis. , 2015, Endocrine, metabolic & immune disorders drug targets.

[16]  D. Klatzmann,et al.  Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. , 2013, The lancet. Diabetes & endocrinology.

[17]  Ludwig Kappos,et al.  Increased Neurofilament Light Chain Blood Levels in Neurodegenerative Neurological Diseases , 2013, PloS one.

[18]  M. Turner,et al.  Inflammation and neurovascular changes in amyotrophic lateral sclerosis , 2013, Molecular and Cellular Neuroscience.

[19]  S. Powell,et al.  Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival , 2012, EMBO molecular medicine.

[20]  H. Weiner,et al.  Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS. , 2012, The Journal of clinical investigation.

[21]  S. Appel,et al.  Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS , 2012, Experimental Neurology.

[22]  I. Evdokimidis,et al.  Alterations of T cell subsets in ALS: a systemic immune activation? , 2012, Acta neurologica Scandinavica.

[23]  G. Mora,et al.  Immune system alterations in sporadic amyotrophic lateral sclerosis patients suggest an ongoing neuroinflammatory process , 2009, Journal of Neuroimmunology.

[24]  J. Bluestone,et al.  Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction. , 2008, Immunity.

[25]  S. John,et al.  CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages , 2007, Proceedings of the National Academy of Sciences.

[26]  M. Shoji,et al.  Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of amyotrophic lateral sclerosis patients , 2007, Neurological research.

[27]  J. Ritz,et al.  IL-2 regulates FOXP3 expression in human CD4+CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. , 2006, Blood.

[28]  Silvano Sozzani,et al.  The chemokine system in diverse forms of macrophage activation and polarization. , 2004, Trends in immunology.

[29]  T. Malek,et al.  Tolerance, not immunity, crucially depends on IL-2 , 2004, Nature Reviews Immunology.

[30]  S. Appel,et al.  Immune reactivity in a mouse model of familial ALS correlates with disease progression , 2001, Neurology.

[31]  M. Swash,et al.  El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis , 2000, Amyotrophic lateral sclerosis and other motor neuron disorders : official publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases.

[32]  Robert A. Cribbie,et al.  The pairwise multiple comparison multiplicity problem: An alternative approach to familywise and comparison wise Type I error control. , 1999 .

[33]  V. Meininger,et al.  A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. , 1994, The New England journal of medicine.

[34]  D. Troost,et al.  Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis , 1990, Neuropathology and applied neurobiology.

[35]  T. Waldmann,et al.  Expression of functional IL 2 receptors by lipopolysaccharide and interferon-gamma stimulated human monocytes. , 1987, Journal of immunology.

[36]  Shimon Sakaguchi,et al.  Regulatory T cells exert checks and balances on self tolerance and autoimmunity , 2010, Nature Immunology.