Functionalized mesoporous silica materials for controlled drug delivery.

In the past decade, non-invasive and biocompatible mesoporous silica materials as efficient drug delivery systems have attracted special attention. Great progress in structure control and functionalization (magnetism and luminescence) design has been achieved for biotechnological and biomedical applications. This review highlights the most recent research progress on silica-based controlled drug delivery systems, including: (i) pure mesoporous silica sustained-release systems, (ii) magnetism and/or luminescence functionalized mesoporous silica systems which integrate targeting and tracking abilities of drug molecules, and (iii) stimuli-responsive controlled release systems which are able to respond to environmental changes, such as pH, redox potential, temperature, photoirradiation, and biomolecules. Although encouraging and potential developments have been achieved, design and mass production of novel multifunctional carriers, some practical biological application, such as biodistribution, the acute and chronic toxicities, long-term stability, circulation properties and targeting efficacy in vivo are still challenging.

[1]  H. Matsui,et al.  Biomimetic assembly of proteins into microcapsules on oil-in-water droplets with structural reinforcement via biomolecular-recognition-based cross-linking of surface peptides. , 2012, Small.

[2]  Chong Peng,et al.  Design and Synthesis of Multifunctional Drug Carriers Based on Luminescent Rattle‐Type Mesoporous Silica Microspheres with a Thermosensitive Hydrogel as a Controlled Switch , 2012 .

[3]  Zongxi Li,et al.  Mesoporous silica nanoparticles in biomedical applications. , 2012, Chemical Society reviews.

[4]  Jayant Khandare,et al.  Multifunctional dendritic polymers in nanomedicine: opportunities and challenges. , 2012, Chemical Society reviews.

[5]  Jun Lin,et al.  pH-responsive drug delivery system based on luminescent CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) hybrid microspheres. , 2012, Biomaterials.

[6]  Jun Lin,et al.  Fibrous-structured magnetic and mesoporous Fe3O4/silica microspheres: synthesis and intracellular doxorubicin delivery , 2011 .

[7]  H. Gu,et al.  Synthesis and characterization of pore size-tunable magnetic mesoporous silica nanoparticles. , 2011, Journal of colloid and interface science.

[8]  Fei He,et al.  Monodisperse Gd2O3:Ln (Ln = Eu3+, Tb3+, Dy3+, Sm3+, Yb3+/Er3+, Yb3+/Tm3+, and Yb3+/Ho3+) nanocrystals with tunable size and multicolor luminescent properties , 2011 .

[9]  Hongti Zhang,et al.  A glucose-responsive controlled release of insulin system based on enzyme multilayers-coated mesoporous silica particles. , 2011, Chemical communications.

[10]  Jun Lin,et al.  Core–Shell Structured Up-Conversion Luminescent and Mesoporous NaYF4:Yb3+/Er3+@nSiO2@mSiO2 Nanospheres as Carriers for Drug Delivery , 2011 .

[11]  C. Cai,et al.  Synthesis of magnetic, fluorescent and mesoporous core-shell-structured nanoparticles for imaging, targeting and photodynamic therapy , 2011 .

[12]  Wenjun Meng,et al.  Hollow Mesoporous Silica/Poly(l-lysine) Particles for Codelivery of Drug and Gene with Enzyme-Triggered Release Property , 2011 .

[13]  Jun Lin,et al.  Electrospinning Preparation and Drug‐Delivery Properties of an Up‐conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite , 2011 .

[14]  Jia Guo,et al.  Thermo and pH dual responsive, polymer shell coated, magnetic mesoporous silica nanoparticles for controlled drug release , 2011 .

[15]  Tingting Wang,et al.  Multifunctional hollow mesoporous silica nanocages for cancer cell detection and the combined chemotherapy and photodynamic therapy. , 2011, ACS applied materials & interfaces.

[16]  Jun Lin,et al.  Monodisperse core-shell structured up-conversion Yb(OH)CO₃@YbPO₄:Er³+ hollow spheres as drug carriers. , 2011, Biomaterials.

[17]  Z. Su,et al.  Fluorescent hollow/rattle-type mesoporous Au@SiO2 nanocapsules for drug delivery and fluorescence imaging of cancer cells. , 2011, Journal of colloid and interface science.

[18]  Jianlin Shi,et al.  A Hollow‐Core, Magnetic, and Mesoporous Double‐Shell Nanostructure: In Situ Decomposition/Reduction Synthesis, Bioimaging, and Drug‐Delivery Properties , 2011 .

[19]  Dongsheng Xu,et al.  A Unique Transformation Route for Synthesis of Rodlike Hollow Mesoporous Silica Particles , 2011 .

[20]  Aifei Wang,et al.  pH-Triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. , 2011, Journal of the American Chemical Society.

[21]  Yufang Zhu,et al.  PEGylated hollow mesoporous silica nanoparticles as potential drug delivery vehicles , 2011 .

[22]  Fong-Yu Cheng,et al.  Enhancing transversal relaxation for magnetite nanoparticles in MR imaging using Gd³+- chelated mesoporous silica shells. , 2011, ACS nano.

[23]  Shanshan Huang,et al.  A luminescent and mesoporous core-shell structured Gd2O3 : Eu(3+)@nSiO2@mSiO2 nanocomposite as a drug carrier. , 2011, Dalton transactions.

[24]  H. Gu,et al.  Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[25]  Jinlong Zhang,et al.  Superbright multifluorescent core-shell mesoporous nanospheres as trackable transport carrier for drug. , 2011, ACS nano.

[26]  Jun Lin,et al.  A novel luminescent mesoporous silica/apatite composite for controlled drug release , 2011 .

[27]  Z. Su,et al.  Uniform hollow mesoporous silica nanocages for drug delivery in vitro and in vivo for liver cancer therapy , 2011 .

[28]  Limin Guo,et al.  Double mesoporous silica shelled spherical/ellipsoidal nanostructures: Synthesis and hydrophilic/hydrophobic anticancer drug delivery , 2011 .

[29]  V. S. Lin,et al.  Light- and pH-responsive release of doxorubicin from a mesoporous silica-based nanocarrier. , 2011, Chemistry.

[30]  Dong Wan,et al.  PEGylated liposome coated QDs/mesoporous silica core-shell nanoparticles for molecular imaging. , 2011, Chemical communications.

[31]  Yu Cao,et al.  Urchin-like GdPO4 and GdPO4:Eu3+ hollow spheres – hydrothermal synthesis, luminescence and drug-delivery properties , 2011 .

[32]  Yuan Yuan,et al.  A magnetic, reversible pH-responsive nanogated ensemble based on Fe3O4 nanoparticles-capped mesoporous silica. , 2011, Biomaterials.

[33]  E. Pérez-Payá,et al.  Enzyme-mediated controlled release systems by anchoring peptide sequences on mesoporous silica supports. , 2011, Angewandte Chemie.

[34]  Yu Chen,et al.  Biocompatibility, MR imaging and targeted drug delivery of a rattle-type magnetic mesoporous silica nanosphere system conjugated with PEG and cancer-cell-specific ligands , 2011 .

[35]  Jun Lin,et al.  Facile synthesis of an up-conversion luminescent and mesoporous Gd2O3 : Er3+@nSiO2@mSiO2 nanocomposite as a drug carrier. , 2011, Nanoscale.

[36]  Y. Chen,et al.  Multifunctional magnetically removable nanogated lids of Fe3O4–capped mesoporous silica nanoparticles for intracellular controlled release and MR imaging , 2011 .

[37]  Feng Chen,et al.  Multifunctional Mesoporous Nanoellipsoids for Biological Bimodal Imaging and Magnetically Targeted Delivery of Anticancer Drugs , 2011 .

[38]  María Vallet-Regí,et al.  Smart drug delivery through DNA/magnetic nanoparticle gates. , 2011, ACS nano.

[39]  Xianfeng Zhang,et al.  Enzyme-inspired controlled release of cucurbit[7]uril nanovalves by using magnetic mesoporous silica. , 2011, Chemistry.

[40]  Yaping Li,et al.  In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation. , 2011, Small.

[41]  P. Liu,et al.  Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. , 2011, Angewandte Chemie.

[42]  C. Yeh,et al.  Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery. , 2011, Biomaterials.

[43]  M. Vallet‐Regí,et al.  Magnetic mesoporous silica spheres for hyperthermia therapy. , 2010, Acta biomaterialia.

[44]  Elena Aznar,et al.  Enzyme-responsive intracellular controlled release using nanometric silica mesoporous supports capped with "saccharides". , 2010, ACS nano.

[45]  Jianlin Shi,et al.  Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. , 2010, Journal of the American Chemical Society.

[46]  Chulhee Kim,et al.  Glutathione‐Induced Intracellular Release of Guests from Mesoporous Silica Nanocontainers with Cyclodextrin Gatekeepers , 2010, Advanced materials.

[47]  Feng Chen,et al.  An anti-ROS/hepatic fibrosis drug delivery system based on salvianolic acid B loaded mesoporous silica nanoparticles. , 2010, Biomaterials.

[48]  R. Martínez‐Máñez,et al.  Controlled delivery using oligonucleotide-capped mesoporous silica nanoparticles. , 2010, Angewandte Chemie.

[49]  Yufang Zhu,et al.  Folate-Conjugated Fe3O4@SiO2 Hollow Mesoporous Spheres for Targeted Anticancer Drug Delivery , 2010 .

[50]  Yu Chen,et al.  Core/shell structured hollow mesoporous nanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery. , 2010, ACS nano.

[51]  J. F. Stoddart,et al.  pH-operated nanopistons on the surfaces of mesoporous silica nanoparticles. , 2010, Journal of the American Chemical Society.

[52]  J. F. Stoddart,et al.  Autonomous in vitro anticancer drug release from mesoporous silica nanoparticles by pH-sensitive nanovalves. , 2010, Journal of the American Chemical Society.

[53]  Zongxi Li,et al.  Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. , 2010, Small.

[54]  Xiaolan Chen,et al.  Hollow Mesoporous Zirconia Nanocapsules for Drug Delivery , 2010 .

[55]  S. Park,et al.  A general pH-responsive supramolecular nanovalve based on mesoporous organosilica hollow nanospheres. , 2010, Chemistry.

[56]  T. Bein,et al.  Role of endosomal escape for disulfide-based drug delivery from colloidal mesoporous silica evaluated by live-cell imaging. , 2010, Nano letters.

[57]  Jianfeng Chen,et al.  Mesoporous silica nanotubes coated with multilayered polyelectrolytes for pH-controlled drug release. , 2010, Acta biomaterialia.

[58]  J. Ho,et al.  Biofunctionalized phospholipid-capped mesoporous silica nanoshuttles for targeted drug delivery: improved water suspensibility and decreased nonspecific protein binding. , 2010, ACS nano.

[59]  T. Bein,et al.  Bio-degradation study of colloidal mesoporous silica nanoparticles: Effect of surface functionalization with organo-silanes and poly(ethylene glycol) , 2010 .

[60]  Chin-Tu Chen,et al.  Surface charge-mediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. , 2010, Biomaterials.

[61]  Johann Kecht,et al.  A programmable DNA-based molecular valve for colloidal mesoporous silica. , 2010, Angewandte Chemie.

[62]  Lan Zhao,et al.  Pore fabrication in various silica-based nanoparticles by controlled etching. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[63]  R. Ma,et al.  Shape-Controlled Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanocubes , 2010 .

[64]  Min Zhu,et al.  The three-stage in vitro degradation behavior of mesoporous silica in simulated body fluid , 2010 .

[65]  Shanshan Huang,et al.  Luminescent CaWO4:Tb3+‐Loaded Mesoporous Silica Composites for the Immobilization and Release of Lysozyme , 2010 .

[66]  Jun Lin,et al.  Fabrication of luminescent and mesoporous core-shell structured nanocomposites and their application as drug carrier , 2010 .

[67]  G. van Tendeloo,et al.  Designed Multifunctional Nanocomposites for Biomedical Applications , 2010 .

[68]  G. Lu,et al.  A facile vesicle template route to multi-shelled mesoporous silica hollow nanospheres , 2010 .

[69]  Shanshan Huang,et al.  Facile and controllable synthesis of monodisperse CaF2 and CaF2:Ce3+/Tb3+ hollow spheres as efficient luminescent materials and smart drug carriers. , 2010, Chemistry.

[70]  Angela M Belcher,et al.  Targeted cytosolic delivery of cell-impermeable compounds by nanoparticle-mediated, light-triggered endosome disruption. , 2010, Nano letters.

[71]  Xuezhong Du,et al.  pH- and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release , 2010 .

[72]  Jun Lin,et al.  Synthesis of Magnetic, Up‐Conversion Luminescent, and Mesoporous Core–Shell‐Structured Nanocomposites as Drug Carriers , 2010 .

[73]  Christy L Haynes,et al.  Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. , 2010, Journal of the American Chemical Society.

[74]  Yufang Zhu,et al.  Rattle-type Fe(3)O(4)@SiO(2) hollow mesoporous spheres as carriers for drug delivery. , 2010, Small.

[75]  Jianlin Shi,et al.  The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. , 2010, Biomaterials.

[76]  Feng Chen,et al.  Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. , 2010, ACS nano.

[77]  A. Heise,et al.  Highly specific dual enzyme-mediated payload release from peptide-coated silica particles. , 2010, Journal of the American Chemical Society.

[78]  Taeghwan Hyeon,et al.  Uniform mesoporous dye-doped silica nanoparticles decorated with multiple magnetite nanocrystals for simultaneous enhanced magnetic resonance imaging, fluorescence imaging, and drug delivery. , 2010, Journal of the American Chemical Society.

[79]  Xia Tao,et al.  Fluorescent mesoporous silica nanotubes incorporating CdS quantum dots for controlled release of ibuprofen. , 2009, Acta biomaterialia.

[80]  Xiaochuan Duan,et al.  Hematite (alpha-Fe2O3) with various morphologies: ionic liquid-assisted synthesis, formation mechanism, and properties. , 2009, ACS nano.

[81]  Chulhee Kim,et al.  Enzyme responsive nanocontainers with cyclodextrin gatekeepers and synergistic effects in release of guests. , 2009, Journal of the American Chemical Society.

[82]  J. F. Stoddart,et al.  Controlled-access hollow mechanized silica nanocontainers. , 2009, Journal of the American Chemical Society.

[83]  Yadong Li,et al.  Upconversion luminescence of monodisperse CaF2:Yb(3+)/Er(3+) nanocrystals. , 2009, Journal of the American Chemical Society.

[84]  R. Martínez‐Máñez,et al.  Controlled delivery systems using antibody-capped mesoporous nanocontainers. , 2009, Journal of the American Chemical Society.

[85]  Douglas C. Friedman,et al.  pH-responsive mechanised nanoparticles gated by semirotaxanes. , 2009, Chemical communications.

[86]  Yu Chen,et al.  Bottom-up tailoring of nonionic surfactant-templated mesoporous silica nanomaterials by a novel composite liquid crystal templating mechanism , 2009 .

[87]  Jun Lin,et al.  A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier. , 2009, Biomaterials.

[88]  J. F. Stoddart,et al.  pH clock-operated mechanized nanoparticles. , 2009, Journal of the American Chemical Society.

[89]  M. Vallet‐Regí,et al.  Incorporation of Phosphorus into Mesostructured Silicas: A Novel Approach to Reduce the SiO2 Leaching in Water , 2009 .

[90]  Y. Hung,et al.  Monoclonal antibody-functionalized mesoporous silica nanoparticles (MSN) for selective targeting breast cancer cells , 2009 .

[91]  Patrick Augustijns,et al.  Ordered mesoporous silica material SBA-15: a broad-spectrum formulation platform for poorly soluble drugs. , 2009, Journal of pharmaceutical sciences.

[92]  Bo Tang,et al.  Multifunctional core-shell nanoparticles as highly efficient imaging and photosensitizing agents. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[93]  R. Martínez‐Máñez,et al.  Enzyme-responsive controlled release using mesoporous silica supports capped with lactose. , 2009, Angewandte Chemie.

[94]  Ying-Wei Yang,et al.  Dual-controlled nanoparticles exhibiting AND logic. , 2009, Journal of the American Chemical Society.

[95]  R. Martínez‐Máñez,et al.  Borate-driven gatelike scaffolding using mesoporous materials functionalised with saccharides. , 2009, Chemistry.

[96]  Yufang Zhu,et al.  Magnetic SBA-15/poly(N-isopropylacrylamide) composite: Preparation, characterization and temperature-responsive drug release property , 2009 .

[97]  Jianhua Hu,et al.  Magnetic mesoporous silica microspheres with thermo-sensitive polymer shell for controlled drug release , 2009 .

[98]  Juan L. Vivero-Escoto,et al.  Cell-induced intracellular controlled release of membrane impermeable cysteine from a mesoporous silica nanoparticle-based drug delivery system. , 2009, Chemical communications.

[99]  V. S. Lin,et al.  Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. , 2009, Journal of the American Chemical Society.

[100]  Yu Chen,et al.  Rhodamine B-co-condensed spherical SBA-15 nanoparticles: facile co-condensation synthesis and excellent fluorescence features , 2009 .

[101]  P. Li,et al.  Dual‐Mode Luminescent Colloidal Spheres from Monodisperse Rare‐Earth Fluoride Nanocrystals , 2009 .

[102]  Jianlin Shi,et al.  Fabrication of uniform hollow mesoporous silica spheres and ellipsoids of tunable size through a facile hard-templating route , 2009 .

[103]  R. Martínez‐Máñez,et al.  pH- and photo-switched release of guest molecules from mesoporous silica supports. , 2009, Journal of the American Chemical Society.

[104]  Yufang Zhu,et al.  An Efficient Route to Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates , 2009 .

[105]  T. Bein,et al.  Biotin-avidin as a protease-responsive cap system for controlled guest release from colloidal mesoporous silica. , 2009, Angewandte Chemie.

[106]  Jinlong Zhang,et al.  Building of multifluorescent mesoporous silica nanoparticles. , 2009, Chemical communications.

[107]  María Vallet-Regí,et al.  Influence of mesoporous structure type on the controlled delivery of drugs: release of ibuprofen from MCM-48, SBA-15 and functionalized SBA-15 , 2009 .

[108]  Boshi Tian,et al.  Temperature-Responsive Nanocomposites Based on Mesoporous SBA-15 Silica and PNIPAAm: Synthesis and Characterization , 2009 .

[109]  Xiaohu Gao,et al.  Encapsulation of Single Quantum Dots with Mesoporous Silica , 2009, Annals of Biomedical Engineering.

[110]  Juan L. Vivero-Escoto,et al.  Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. , 2009, Journal of the American Chemical Society.

[111]  Meng-Yin Xie,et al.  Synthesis of Yb3+/Er3+ co-doped MnF2 nanocrystals with bright red up-converted fluorescence , 2009 .

[112]  Zhigang Chen,et al.  Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors. , 2009, Analytical chemistry.

[113]  Louis A. Cuccia,et al.  Controlled Synthesis and Water Dispersibility of Hexagonal Phase NaGdF4:Ho3+/Yb3+ Nanoparticles , 2009 .

[114]  Niveen M. Khashab,et al.  Light-operated mechanized nanoparticles. , 2009, Journal of the American Chemical Society.

[115]  Jianlin Shi,et al.  Size-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition , 2009 .

[116]  Shanshan Huang,et al.  Magnetic Mesoporous Silica Spheres for Drug Targeting and Controlled Release , 2009 .

[117]  Chenghui Liu,et al.  Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4nanocrystals with multicolor photoluminescence , 2009 .

[118]  Juan L. Vivero-Escoto,et al.  Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. , 2009, Small.

[119]  Shan Jiang,et al.  Multicolor Core/Shell‐Structured Upconversion Fluorescent Nanoparticles , 2008 .

[120]  Shanshan Huang,et al.  Fabrication, characterization of spherical CaWO4:Ln @MCM-41(Ln = Eu3+, Dy3+, Sm3+, Er3+) composites and their applications as drug release systems , 2008 .

[121]  R. Martínez‐Máñez,et al.  Controlled release of vitamin B2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[122]  Zhigang Chen,et al.  Facile Epoxidation Strategy for Producing Amphiphilic Up-Converting Rare-Earth Nanophosphors as Biological Labels , 2008 .

[123]  Stefan Andersson-Engels,et al.  Autofluorescence insensitive imaging using upconverting nanocrystals in scattering media , 2008 .

[124]  V. Zharov,et al.  Cobalt nanoparticles coated with graphitic shells as localized radio frequency absorbers for cancer therapy , 2008, Nanotechnology.

[125]  G. Lu,et al.  Fabrication of a magnetic helical mesostructured silica rod , 2008, Nanotechnology.

[126]  Taeghwan Hyeon,et al.  Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. , 2008, Angewandte Chemie.

[127]  Tao Wu,et al.  Tunable redox-responsive hybrid nanogated ensembles. , 2008, Journal of the American Chemical Society.

[128]  Yong Zhang,et al.  Biocompatibility of silica coated NaYF(4) upconversion fluorescent nanocrystals. , 2008, Biomaterials.

[129]  Robert Langer,et al.  The biocompatibility of mesoporous silicates. , 2008, Biomaterials.

[130]  Jianlin Shi,et al.  Uniform Rattle‐type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained‐Release Property , 2008 .

[131]  C. Pan,et al.  Smart Core-Shell Nanostructure with a Mesoporous Core and a Stimuli-Responsive Nanoshell Synthesized via Surface Reversible Addition-Fragmentation Chain Transfer Polymerization , 2008 .

[132]  María Vallet-Regí,et al.  Bone-regenerative bioceramic implants with drug and protein controlled delivery capability , 2008 .

[133]  Lei Li,et al.  A facile route to hollow nanospheres of mesoporous silica with tunable size. , 2008, Chemical communications.

[134]  Rajeev Kumar,et al.  Temperature Responsive Solution Partition of Organic–Inorganic Hybrid Poly(N‐isopropylacrylamide)‐Coated Mesoporous Silica Nanospheres , 2008 .

[135]  Monty Liong,et al.  Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. , 2008, ACS nano.

[136]  María Vallet-Regí,et al.  L-Trp adsorption into silica mesoporous materials to promote bone formation. , 2008, Acta biomaterialia.

[137]  Shanshan Huang,et al.  Synthesis and Characterization of Magnetic FexOy@SBA-15 Composites with Different Morphologies for Controlled Drug Release and Targeting , 2008 .

[138]  Jeffrey I Zink,et al.  Light-activated nanoimpeller-controlled drug release in cancer cells. , 2008, Small.

[139]  Yong Zhang,et al.  Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals. , 2008, Biomaterials.

[140]  Mauro Ferrari,et al.  Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. , 2008, Nature nanotechnology.

[141]  H. Gu,et al.  Magnetic Hollow Spheres of Periodic Mesoporous Organosilica and Fe3O4 Nanocrystals: Fabrication and Structure Control , 2008 .

[142]  Shanshan Huang,et al.  Luminescence functionalization of mesoporous silica with different morphologies and applications as drug delivery systems. , 2008, Biomaterials.

[143]  William R. Dichtel,et al.  Enzyme-responsive snap-top covered silica nanocontainers. , 2008, Journal of the American Chemical Society.

[144]  R. Martínez‐Máñez,et al.  Dual aperture control on pH- and anion-driven supramolecular nanoscopic hybrid gate-like ensembles. , 2008, Journal of the American Chemical Society.

[145]  R. Westervelt,et al.  Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres. , 2008, ACS nano.

[146]  D. Zhao,et al.  Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. , 2008, Journal of the American Chemical Society.

[147]  Yufang Zhu,et al.  Immobilization of Trametes versicolor Laccase on Magnetically Separable Mesoporous Silica Spheres , 2007 .

[148]  Di Zhang,et al.  Control of drug release through the in situ assembly of stimuli-responsive ordered mesoporous silica with magnetic particles. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[149]  Di Zhang,et al.  Design and synthesis of delivery system based on SBA-15 with magnetic particles formed in situ and thermo-sensitive PNIPA as controlled switch , 2007 .

[150]  Chenghui Liu,et al.  Controlled synthesis of hexagon shaped lanthanide-doped LaF3 nanoplates with multicolor upconversion fluorescence , 2007 .

[151]  R. Martínez‐Máñez,et al.  Photochemical and Chemical Two‐Channel Control of Functional Nanogated Hybrid Architectures , 2007 .

[152]  Jianfeng Chen,et al.  Synthesis of Porous Magnetic Hollow Silica Nanospheres for Nanomedicine Application , 2007 .

[153]  Monty Liong,et al.  Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. , 2007, Small.

[154]  P. Maggard,et al.  M(bipyridine)V(4)O(10) (M = Cu, Ag): hybrid analogues of low-dimensional reduced vanadates. , 2007, Inorganic chemistry.

[155]  Yufang Zhu,et al.  A mesoporous core-shell structure for pH-controlled storage and release of water-soluble drug , 2007 .

[156]  M. Vallet‐Regí,et al.  Aerosol-assisted synthesis of magnetic mesoporous silica spheres for drug targeting , 2007 .

[157]  Ming-Hsien Tsai,et al.  Persistent Tissue Kinetics and Redistribution of Nanoparticles, Quantum Dot 705, in Mice: ICP-MS Quantitative Assessment , 2007, Environmental health perspectives.

[158]  Shanshan Huang,et al.  MCM-41 functionalized with YVO4:Eu3+: a novel drug delivery system , 2007 .

[159]  Jeffrey I. Zink,et al.  Photo-Driven Expulsion of Molecules from Mesostructured Silica Nanoparticles , 2007 .

[160]  J. Ying,et al.  Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. , 2007, Angewandte Chemie.

[161]  Shanshan Huang,et al.  Luminescence functionalization of SBA-15 by YVO4:Eu3+ as a novel drug delivery system. , 2007, Inorganic chemistry.

[162]  Sang Cheon Lee,et al.  Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. , 2007, Angewandte Chemie.

[163]  Andi Tao,et al.  Silica Nanotubes Based on Needle-like Calcium Carbonate: Fabrication and Immobilization for Glucose Oxidase , 2007 .

[164]  Jean-Marie Devoisselle,et al.  Solid-State NMR Study of Ibuprofen Confined in MCM-41 Material , 2006 .

[165]  Yang Wei,et al.  Synthesis of Oil-Dispersible Hexagonal-Phase and Hexagonal-Shaped NaYF4:Yb,Er Nanoplates , 2006 .

[166]  M. Godlewski,et al.  Optical characterization of eu-doped and undoped gd(2)o(3) nanoparticles synthesized by the hydrogen flame pyrolysis method. , 2006, Journal of the American Chemical Society.

[167]  Hedi Mattoussi,et al.  Capping of CdSe–ZnS quantum dots with DHLA and subsequent conjugation with proteins , 2006, Nature Protocols.

[168]  Martin Malmsten,et al.  Soft drug delivery systems. , 2006, Soft matter.

[169]  María Vallet-Regí,et al.  Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering. , 2006, Chemistry.

[170]  Shuming Nie,et al.  Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. , 2006, Analytical chemistry.

[171]  Hans C. Fischer,et al.  Pharmacokinetics of Nanoscale Quantum Dots: In Vivo Distribution, Sequestration, and Clearance in the Rat , 2006 .

[172]  Cari D. Pentecost,et al.  Construction of a pH-driven supramolecular nanovalve. , 2006, Organic letters.

[173]  Shilun Qiu,et al.  Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica , 2006 .

[174]  Yadong Li,et al.  Green upconversion nanocrystals for DNA detection. , 2006, Chemical communications.

[175]  María Vallet-Regí,et al.  Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. , 2006, Journal of the American Chemical Society.

[176]  Chi H. Lee,et al.  Drug delivery systems for hormone therapy. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[177]  Jung Ho Yu,et al.  Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals. , 2006, Journal of the American Chemical Society.

[178]  María Vallet-Regí,et al.  Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern , 2006 .

[179]  M. Vallet‐Regí,et al.  Release evaluation of drugs from ordered three-dimensional silica structures. , 2005, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[180]  Feng Wang,et al.  Luminescent nanomaterials for biological labelling , 2005, Nanotechnology.

[181]  Yongsheng Li,et al.  Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface , 2005 .

[182]  Jianfeng Chen,et al.  Silica nanotubes for lysozyme immobilization. , 2005, Journal of colloid and interface science.

[183]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[184]  Bruce D Hammock,et al.  Microarray immunoassay for phenoxybenzoic acid using polymer encapsulated Eu:Gd2O3 nanoparticles as fluorescent labels. , 2005, Analytical chemistry.

[185]  Yufang Zhu,et al.  Preparation of novel hollow mesoporous silica spheres and their sustained-release property , 2005 .

[186]  Qing Peng,et al.  Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. , 2005, Angewandte Chemie.

[187]  Yufang Zhu,et al.  A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property , 2005 .

[188]  Yongzhuo Li,et al.  Synthesis and Upconversion Luminescence of Hexagonal‐Phase NaYF4:Yb, Er3+ Phosphors of Controlled Size and Morphology , 2005 .

[189]  K. Hidajat,et al.  Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[190]  Yufang Zhu,et al.  Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure. , 2005, Angewandte Chemie.

[191]  Victor S-Y Lin,et al.  Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. , 2005, Angewandte Chemie.

[192]  Chung-Yuan Mou,et al.  Well-Ordered Mesoporous Silica Nanoparticles as Cell Markers , 2005 .

[193]  Timothy Thatt Yang Tan,et al.  Robust, Non‐Cytotoxic, Silica‐Coated CdSe Quantum Dots with Efficient Photoluminescence , 2005 .

[194]  Wenru Zhao,et al.  Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. , 2005, Journal of the American Chemical Society.

[195]  V. S. Lin,et al.  Real-Time Imaging of Tunable Adenosine 5-Triphosphate Release from an MCM-41-Type Mesoporous Silica Nanosphere-Based Delivery System , 2005, Applied spectroscopy.

[196]  Olivier Barbier,et al.  Effect of Heavy Metals on, and Handling by, the Kidney , 2005, Nephron Physiology.

[197]  V. Torchilin Recent advances with liposomes as pharmaceutical carriers , 2005, Nature Reviews Drug Discovery.

[198]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[199]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[200]  C. Barbé,et al.  Silica Particles: A Novel Drug‐Delivery System , 2004 .

[201]  Jenny Andersson,et al.  Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro- and Mesoporous Silica Matrices , 2004 .

[202]  Xiaogang Peng,et al.  Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach , 2004 .

[203]  Younan Xia,et al.  Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals , 2004 .

[204]  É. Duguet,et al.  Magnetic nanoparticle design for medical diagnosis and therapy , 2004 .

[205]  Daniele Gerion,et al.  Fluorescent CdSe/ZnS nanocrystal-peptide conjugates for long-term, nontoxic imaging and , 2004 .

[206]  J. A. Carter,et al.  Long-lifetime luminescence of lanthanide-doped gadolinium oxide nanoparticles for immunoassays , 2004 .

[207]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[208]  M. Vallet‐Regí,et al.  Influence of pore size of MCM-41 matrices on drug delivery rate , 2004 .

[209]  Jianlin Shi,et al.  Nanocomposites from ordered mesoporous materials , 2004 .

[210]  Robert Langer,et al.  Small-scale systems for in vivo drug delivery , 2003, Nature Biotechnology.

[211]  F. Xiao,et al.  High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures. , 2003, Angewandte Chemie.

[212]  D. Zhao,et al.  Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties. , 2003, Angewandte Chemie.

[213]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[214]  Victor S-Y Lin,et al.  A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. , 2003, Journal of the American Chemical Society.

[215]  Masahiro Fujiwara,et al.  Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica , 2003, Nature.

[216]  M. Vallet‐Regí,et al.  MCM-41 Organic Modification as Drug Delivery Rate Regulator , 2003 .

[217]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[218]  Erkki Ruoslahti,et al.  Nanocrystal targeting in vivo , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[219]  Hao Zeng,et al.  Size-controlled synthesis of magnetite nanoparticles. , 2002, Journal of the American Chemical Society.

[220]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[221]  Younan Xia,et al.  Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol−Gel Approach , 2002 .

[222]  Taeghwan Hyeon,et al.  Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. , 2001, Journal of the American Chemical Society.

[223]  Nicholas A. Kotov,et al.  Albumin−CdTe Nanoparticle Bioconjugates: Preparation, Structure, and Interunit Energy Transfer with Antenna Effect , 2001 .

[224]  T. Pinnavaia,et al.  Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds The partial support of this research by the National Science Foundation through CRG grant 99-03706 is gratefully acknowledged. , 2001, Angewandte Chemie.

[225]  Andreas Kornowski,et al.  Highly Luminescent Monodisperse CdSe and CdSe/ZnS Nanocrystals Synthesized in a Hexadecylamine-Trioctylphosphine Oxide-Trioctylphospine Mixture. , 2001, Nano letters.

[226]  R. Sam Niedbala,et al.  Up-converting phosphor reporters for nucleic acid microarrays , 2001, Nature Biotechnology.

[227]  M. Vallet‐Regí,et al.  A New Property of MCM-41: Drug Delivery System , 2001 .

[228]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[229]  Liberato Manna,et al.  Synthesis of Soluble and Processable Rod-, Arrow-, Teardrop-, and Tetrapod-Shaped CdSe Nanocrystals , 2000 .

[230]  T. Pinnavaia,et al.  Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite Type Y Seeds , 2000 .

[231]  M. Z. Khan,et al.  A pH-dependent colon targeted oral drug delivery system using methacrylic acid copolymers. I. Manipulation Of drug release using Eudragit L100-55 and Eudragit S100 combinations. , 1999, Journal of controlled release : official journal of the Controlled Release Society.

[232]  Bradley F. Chmelka,et al.  MESOCELLULAR SILICEOUS FOAMS WITH UNIFORMLY SIZED CELLS AND WINDOWS , 1999 .

[233]  S. Nie,et al.  Quantum dot bioconjugates for ultrasensitive nonisotopic detection. , 1998, Science.

[234]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[235]  L. Gerweck Tumor pH: implications for treatment and novel drug design. , 1998, Seminars in radiation oncology.

[236]  Xiaogang Peng,et al.  Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: “Focusing” of Size Distributions , 1998 .

[237]  Xiaogang Peng,et al.  Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility , 1997 .

[238]  Anne C. Tropper,et al.  Analysis of blue and red laser performance of the infrared-pumped praseodymium-doped fluoride fiber laser , 1994 .

[239]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[240]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[241]  H. G. Schild Poly(N-isopropylacrylamide): experiment, theory and application , 1992 .

[242]  Horst Weller,et al.  Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles , 1987 .

[243]  R. Palmer,et al.  Cytotoxicity of the rare earth metals cerium, lanthanum, and neodymium in vitro: comparisons with cadmium in a pulmonary macrophage primary culture system. , 1987, Environmental research.

[244]  J. Haveman,et al.  The relevance of tumour pH to the treatment of malignant disease. , 1984, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[245]  M. Heskins,et al.  Solution Properties of Poly(N-isopropylacrylamide) , 1968 .