VAPs and ACBD5 tether peroxisomes to the ER for peroxisome maintenance and lipid homeostasis

Lipid exchange between the endoplasmic reticulum (ER) and peroxisomes is necessary for the synthesis and catabolism of lipids, the trafficking of cholesterol, and peroxisome biogenesis in mammalian cells. However, how lipids are exchanged between these two organelles is not understood. In this study, we report that the ER-resident VAMP-associated proteins A and B (VAPA and VAPB) interact with the peroxisomal membrane protein acyl-CoA binding domain containing 5 (ACBD5) and that this interaction is required to tether the two organelles together, thereby facilitating the lipid exchange between them. Depletion of either ACBD5 or VAP expression results in increased peroxisome mobility, suggesting that VAP–ACBD5 complex acts as the primary ER–peroxisome tether. We also demonstrate that tethering of peroxisomes to the ER is necessary for peroxisome growth, the synthesis of plasmalogen phospholipids, and the maintenance of cellular cholesterol levels. Collectively, our data highlight the importance of VAP–ACBD5–mediated contact between the ER and peroxisomes for organelle maintenance and lipid homeostasis.

[1]  F. Alkuraya,et al.  Deficiency of a Retinal Dystrophy Protein, Acyl-CoA Binding Domain-containing 5 (ACBD5), Impairs Peroxisomal β-Oxidation of Very-long-chain Fatty Acids* , 2016, The Journal of Biological Chemistry.

[2]  A. Vanderver,et al.  ACBD5 deficiency causes a defect in peroxisomal very long-chain fatty acid metabolism , 2016, Journal of Medical Genetics.

[3]  T. Levine,et al.  VAP, a Versatile Access Point for the Endoplasmic Reticulum: Review and analysis of FFAT-like motifs in the VAPome. , 2016, Biochimica et biophysica acta.

[4]  P. Kim,et al.  Multiple paths to peroxisomes: Mechanism of peroxisome maintenance in mammals. , 2016, Biochimica et biophysica acta.

[5]  S. R. Terlecky,et al.  Peroxisome biogenesis in mammalian cells: The impact of genes and environment. , 2016, Biochimica et biophysica acta.

[6]  S. Subramani,et al.  De novo peroxisome biogenesis: Evolving concepts and conundrums. , 2016, Biochimica et biophysica acta.

[7]  M. Schrader,et al.  Proliferation and fission of peroxisomes - An update. , 2016, Biochimica et biophysica acta.

[8]  M. Schuldiner,et al.  No peroxisome is an island - Peroxisome contact sites. , 2016, Biochimica et biophysica acta.

[9]  Brian Raught,et al.  A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface , 2015, Cell.

[10]  M. Schrader,et al.  The different facets of organelle interplay—an overview of organelle interactions , 2015, Front. Cell Dev. Biol..

[11]  N. Borgese,et al.  Autophagy and Neurodegeneration: Insights from a Cultured Cell Model of ALS , 2015, Cells.

[12]  R. Mullen,et al.  Multiple Domains in PEX16 Mediate Its Trafficking and Recruitment of Peroxisomal Proteins to the ER , 2015, Traffic.

[13]  Edward L. Huttlin,et al.  The BioPlex Network: A Systematic Exploration of the Human Interactome , 2015, Cell.

[14]  Gary D Bader,et al.  Inhibition of the Mitochondrial Protease ClpP as a Therapeutic Strategy for Human Acute Myeloid Leukemia. , 2015, Cancer cell.

[15]  Amber L. Couzens,et al.  BioID-based Identification of Skp Cullin F-box (SCF)β-TrCP1/2 E3 Ligase Substrates* , 2015, Molecular & Cellular Proteomics.

[16]  Hongyuan Yang,et al.  Cholesterol Transport through Lysosome-Peroxisome Membrane Contacts , 2015, Cell.

[17]  P. Kim,et al.  PEX16 contributes to peroxisome maintenance by constantly trafficking PEX3 via the ER , 2014, Journal of Cell Science.

[18]  I. J. van der Klei,et al.  Evolving models for peroxisome biogenesis , 2014, Current opinion in cell biology.

[19]  P. Faust,et al.  Cholesterol biosynthesis and ER stress in peroxisome deficiency. , 2014, Biochimie.

[20]  M. Hunt,et al.  Regulation of peroxisomal lipid metabolism: the role of acyl-CoA and coenzyme A metabolizing enzymes. , 2014, Biochimie.

[21]  P. Kessler,et al.  STARD3 or STARD3NL and VAP form a novel molecular tether between late endosomes and the ER , 2013, Journal of Cell Science.

[22]  G. Drin,et al.  A Four-Step Cycle Driven by PI(4)P Hydrolysis Directs Sterol/PI(4)P Exchange by the ER-Golgi Tether OSBP , 2013, Cell.

[23]  R. Rachubinski,et al.  An ER‐peroxisome tether exerts peroxisome population control in yeast , 2013, The EMBO journal.

[24]  R. Mullen,et al.  PEX16: a multifaceted regulator of peroxisome biogenesis , 2013, Front. Physiol..

[25]  S. Oeljeklaus,et al.  A Combined Approach of Quantitative Interaction Proteomics and Live-cell Imaging Reveals a Regulatory Role for Endoplasmic Reticulum (ER) Reticulon Homology Proteins in Peroxisome Biogenesis* , 2013, Molecular & Cellular Proteomics.

[26]  J. Eng,et al.  Comet: An open‐source MS/MS sequence database search tool , 2013, Proteomics.

[27]  A. Moser,et al.  Functions of plasmalogen lipids in health and disease. , 2012, Biochimica et biophysica acta.

[28]  J. Hiltunen,et al.  Transfer of metabolites across the peroxisomal membrane. , 2012, Biochimica et biophysica acta.

[29]  Brian Burke,et al.  A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells , 2012, The Journal of cell biology.

[30]  A. Moser,et al.  Functional characterization of novel mutations in GNPAT and AGPS, causing rhizomelic chondrodysplasia punctata (RCDP) types 2 and 3 , 2012, Human mutation.

[31]  C. Shaw,et al.  VAPB interacts with the mitochondrial protein PTPIP51 to regulate calcium homeostasis , 2011, Human molecular genetics.

[32]  S. Subramani,et al.  Cell-free sorting of peroxisomal membrane proteins from the endoplasmic reticulum , 2011, Proceedings of the National Academy of Sciences.

[33]  E. Ikonen,et al.  Role of ORPs in Sterol Transport from Plasma Membrane to ER and Lipid Droplets in Mammalian Cells , 2011, Traffic.

[34]  R. Schekman,et al.  A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum , 2010, Proceedings of the National Academy of Sciences.

[35]  Tony Pawson,et al.  ProHits: an integrated software platform for mass spectrometry-based interaction proteomics , 2010, Nature Biotechnology.

[36]  Natalie I. Tasman,et al.  A guided tour of the Trans‐Proteomic Pipeline , 2010, Proteomics.

[37]  Aurora Pujol,et al.  PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome , 2009, Nucleic Acids Res..

[38]  Patrick G. A. Pedrioli Trans-Proteomic Pipeline: A Pipeline for Proteomic Analysis , 2010, Proteome Bioinformatics.

[39]  Gregory Jedd,et al.  A Tether for Woronin Body Inheritance Is Associated with Evolutionary Variation in Organelle Positioning , 2009, PLoS genetics.

[40]  W. Zwart,et al.  Cholesterol sensor ORP 1 L organizes late endosomal contacts with the ER protein VAP that controls Rab 7-RILP-p 150 Glued and late endosomal positioning Submitted , 2009 .

[41]  W. Prinz,et al.  Nonvesicular phospholipid transfer between peroxisomes and the endoplasmic reticulum , 2008, Proceedings of the National Academy of Sciences.

[42]  K. Jaqaman,et al.  Robust single particle tracking in live cell time-lapse sequences , 2008, Nature Methods.

[43]  Robert Burke,et al.  ProteoWizard: open source software for rapid proteomics tools development , 2008, Bioinform..

[44]  S. Subramani,et al.  Dysferlin domain-containing proteins, Pex30p and Pex31p, localized to two compartments, control the number and size of oleate-induced peroxisomes in Pichia pastoris. , 2007, Molecular biology of the cell.

[45]  Henri Brunengraber,et al.  Localization of the pre-squalene segment of the isoprenoid biosynthetic pathway in mammalian peroxisomes , 2007, Histochemistry and Cell Biology.

[46]  M. Zago,et al.  Expanding the phenotypes of the Pro56Ser VAPB mutation: Proximal SMA with dysautonomia , 2006, Muscle & nerve.

[47]  Peter K. Kim,et al.  JCB: ARTICLE The , 2022 .

[48]  A. Al-Chalabi,et al.  A common founder for amyotrophic lateral sclerosis type 8 (ALS8) in the Brazilian population , 2005, Human Genetics.

[49]  T. Gillingwater,et al.  A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. , 2004, American journal of human genetics.

[50]  N. Ridgway,et al.  VAMP-associated protein-A regulates partitioning of oxysterol-binding protein-related protein-9 between the endoplasmic reticulum and Golgi apparatus. , 2004, Experimental cell research.

[51]  Robertson Craig,et al.  TANDEM: matching proteins with tandem mass spectra. , 2004, Bioinformatics.

[52]  Christopher J. R. Loewen,et al.  A conserved ER targeting motif in three families of lipid binding proteins and in Opi1p binds VAP , 2003, The EMBO journal.

[53]  S. Krisans The role of peroxisomes in cholesterol metabolism. , 1992, American journal of respiratory cell and molecular biology.