Synchronization of Chaotic Systems with Double Strange Attractors via Passivity Approach
暂无分享,去创建一个
[1] Guanrong Chen,et al. Chaos quasisynchronization induced by impulses with parameter mismatches. , 2006, Chaos.
[2] 宋运忠. The open-plus-closed loop (OPCL) method for chaotic systems with multiple strange attractors , 2007 .
[3] Guanrong Chen,et al. Chaos synchronization of the master-slave generalized Lorenz systems via linear state error feedback control , 2007, 0807.2107.
[4] Carroll,et al. Synchronization in chaotic systems. , 1990, Physical review letters.
[5] T. Lofaro. A Model of the Dynamics of The Newton–Leipnik Attractor , 1997 .
[6] 赵光宙,et al. Passive control of chaotic system with multiple strange attractors , 2006 .
[7] R. Leipnik,et al. Double strange attractors in rigid body motion with linear feedback control , 1981 .
[8] Lixin Tian,et al. Bifurcation analysis and linear control of the Newton–Leipnik system , 2006 .
[9] Benjamin A. Marlin. Periodic orbits in the Newton-leipnik System , 2002, Int. J. Bifurc. Chaos.
[10] T. Lofaro. The Dynamics of Symmetric Bimodal Maps , 1997 .
[11] Hendrik Richter. Controlling chaotic systems with multiple strange attractors , 2002 .