Semi-Lagrangian Method to Study Nonlinear Electrostatic Waves in Quantum Plasma

In this work, we used the semi-Lagrangian method and the Vlasov code to study the instabilities in a quantum plasma with 1-D temperature anisotropy. Taking the Fermi–Dirac type of distribution function (DF) and using the semi-Lagrangian Vlasov code, we studied the gradual evolution of density and kinetic energy in a degenerate plasma with quantum effects. In this collisionless plasma, adiabatic compression will be along the direction of wave propagation and will lead to temperature anisotropy of the electron distribution that varies along the direction of wave propagation. The findings will find application for dense plasma at finite temperature as in laser-produced plasmas, fusion plasma, as well as solar plasmas.

[1]  S. Chandra,et al.  Multistability studies on electron acoustic wave in a magnetized plasma with supra-thermal ions , 2022, Journal of Astrophysics and Astronomy.

[2]  S. Chandra,et al.  Magnetosonic Shocks and Solitons in Fermi Plasma With Quasiperiodic Perturbation , 2022, IEEE Transactions on Plasma Science.

[3]  S. Chandra,et al.  Homotopy Study of Spherical Ion-Acoustic Waves in Relativistic Degenerate Galactic Plasma , 2022, IEEE Transactions on Plasma Science.

[4]  S. Chandra,et al.  Rogue Wave Generation Through Nonlinear Self-Interaction of Electrostatic Waves in Dense Plasma , 2022, IEEE Transactions on Plasma Science.

[5]  S. Chandra,et al.  Forced KdV and Envelope Soliton in Magnetoplasma With Kappa Distributed Ions , 2022, IEEE Transactions on Plasma Science.

[6]  S. Chandra,et al.  Stationary Structures in a Four Component Dense Magnetoplasma With Lateral Perturbations , 2022, IEEE Transactions on Plasma Science.

[7]  S. Chandra,et al.  Nonlinear Wave–Wave Interaction in Semiconductor Junction Diode , 2022, IEEE Transactions on Plasma Science.

[8]  S. Chandra,et al.  Quantum and Relativistic Effects on the KdV and Envelope Solitons in Ion-Plasma Waves , 2022, IEEE Transactions on Plasma Science.

[9]  Arnab Das,et al.  Electron Acoustic Peregrine Breathers in a Quantum Plasma With 1-D Temperature Anisotropy , 2022, IEEE Transactions on Plasma Science.

[10]  S. Chandra,et al.  Resonant Interactions and Chaotic Excitation in Nonlinear Surface Waves in Dense Plasma , 2022, IEEE Transactions on Plasma Science.

[11]  S. Chandra,et al.  Plasma Shock Wave in Gamma-Ray Bursts: Nonlinear Phenomena and Radiative Process , 2022, IEEE Transactions on Plasma Science.

[12]  S. Chandra,et al.  Formation of electron acoustic shock wave in inner magnetospheric plasma , 2022, Indian Journal of Physics.

[13]  S. Chandra,et al.  Chaotic Excitations of Rogue Waves in Stable Parametric Region for Highly-Energetic Pair Plasmas , 2022, 2204.04682.

[14]  S. Chandra,et al.  Amplitude-modulated electron-acoustic waves with bipolar ions and kappa-distributed positrons and warm electrons , 2021, Pramana.

[15]  S. Chandra,et al.  Effects of exchange symmetry and quantum diffraction on amplitude-modulated electrostatic waves in quantum magnetoplasma , 2021, Pramana.

[16]  S. Chandra,et al.  Evolution of nonlinear stationary formations in a quantum plasma at finite temperature , 2021 .

[17]  S. Chandra,et al.  Quantum two stream instability in a relativistically degenerate magnetised plasma , 2021 .

[18]  S. Chandra,et al.  Growth of RT instability at the accreting magnetospheric boundary of neutron stars , 2021 .

[19]  K. Klein,et al.  Creation of large temperature anisotropies in a laboratory plasma , 2020 .

[20]  S. Chandra,et al.  Nonlinear interaction of intense laser beam with dense plasma , 2020, Plasma Physics and Controlled Fusion.

[21]  S. Chandra,et al.  Resonant interactions between the fundamental and higher harmonic of positron acoustic waves in quantum plasma , 2020 .

[22]  S. Chandra,et al.  Electron acoustic solitary structures and shocks in dense inner magnetosphere finite temperature plasma , 2020 .

[23]  S. Chandra,et al.  Amplitude modulation and soliton formation of an intense laser beam interacting with dense quantum plasma: Symbolic simulation analysis , 2020, Contributions to Plasma Physics.

[24]  S. Chandra,et al.  Analytical and Simulation Studies of Forced KdV Solitary Structures in a Two-Component Plasma , 2020 .

[25]  S. Chandra,et al.  Formation of solitary structures and envelope solitons in electron acoustic wave in inner magnetosphere plasma with suprathermal ions , 2020, Contributions to Plasma Physics.

[26]  M. Akbari-Moghanjoughi,et al.  Quantum Faraday excitations in degenerate electron-ion plasma , 2020, Physica Scripta.

[27]  S. Chandra Study of Electron Acoustic Solitary Structures in Fermi Plasma with Two Temperature Electrons , 2020, SSRN Electronic Journal.

[28]  S. Chandra,et al.  Study of small amplitude ion-acoustic solitary wave structures and amplitude modulation in e-p-i plasma with streaming ions , 2018 .

[29]  M. Ghorbanalilu,et al.  Extension of temperature anisotropy Weibel instability to non-Maxwellian plasmas by 2D PIC simulation , 2017 .

[30]  Jalil Ali,et al.  Plasma Kinetic Theory , 2017 .

[31]  S. Chandra,et al.  Study of ion-acoustic solitary wave structures in multi-component plasma containing positive and negative ions and q-exponential distributed electron beam , 2017 .

[32]  A. Singh,et al.  Electron acceleration by ponderomotive force in magnetized quantum plasma , 2017 .

[33]  P. Canu,et al.  TRANSPORT OF SOLAR WIND H+ AND He++ IONS ACROSS EARTH’S BOW SHOCK , 2016 .

[34]  M. Akbari-Moghanjoughi,et al.  Finite temperature static charge screening in quantum plasmas , 2016 .

[35]  S. Chandra,et al.  W-type ion-acoustic solitary waves in plasma consisting of cold ions and nonthermal electrons , 2016 .

[36]  S. Chandra,et al.  DUST ACOUSTIC SOLITARY WAVES IN MAGNETIZED DUSTY PLASMA WITH TRAPPED IONS AND q-NON-EXTENSIVE ELECTRONS , 2015 .

[37]  N. Bertelli,et al.  The effects of finite electron temperature and diffraction on lower hybrid wave propagation , 2014 .

[38]  S. Chandra,et al.  Non-linear propagation of electrostatic waves in relativistic Fermi plasma with arbitrary temperature , 2013 .

[39]  S. Chandra,et al.  Electron-acoustic solitary waves in a relativistically degenerate quantum plasma with two-temperature electrons , 2013 .

[40]  P. Bertrand,et al.  Electron temperature anisotropy instabilities represented by superposition of streams , 2012 .

[41]  S. Chandra,et al.  Modulational instability of electron-acoustic waves in relativistically degenerate quantum plasma , 2012 .

[42]  S. Chandra,et al.  Linear and non-linear propagation of electron plasma waves in quantum plasma , 2012 .

[43]  S. Chandra,et al.  Relativistic effects on the modulational instability of electron plasma waves in quantum plasma , 2012 .

[44]  H. Abbasi,et al.  Preventing the recurrence effect in the Vlasov simulation by randomizing phase-point velocities in phase space. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  S. Chandra,et al.  Amplitude modulation of electron plasma waves in a quantum plasma , 2011 .

[46]  D. Burgess,et al.  ELECTRON TEMPERATURE ANISOTROPY IN AN EXPANDING PLASMA: PARTICLE-IN-CELL SIMULATIONS , 2010, 1002.2349.

[47]  P. Shukla,et al.  Nonlinear aspects of quantum plasma physics , 2009, 0906.4051.

[48]  C. Benedetti,et al.  ${\tt ALaDyn}$: A High-Accuracy PIC Code for the Maxwell–Vlasov Equations , 2008, IEEE Transactions on Plasma Science.

[49]  P. Shukla,et al.  Nonlinear quantum fluid equations for a finite temperature Fermi plasma , 2008 .

[50]  A. P. Misra,et al.  Electron-acoustic solitary waves in dense quantum electron-ion plasmas , 2007 .

[51]  P. Shukla,et al.  Magnetosonic solitons in a fermionic quantum plasma. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  L. Stenflo,et al.  Shielding of a slowly moving test charge in a quantum plasma , 2006 .

[53]  G. Manfredi,et al.  How to model quantum plasmas , 2005, quant-ph/0505004.

[54]  Magdi Shoucri,et al.  Study of laser plasma interactions using an Eulerian Vlasov code , 2004, Comput. Phys. Commun..

[55]  Alain Ghizzo,et al.  A non-periodic 2D semi-Lagrangian Vlasov code for laser-plasma interaction on parallel computer , 2003 .

[56]  Olivier Coulaud,et al.  Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system , 2003 .

[57]  Eric Sonnendrücker,et al.  Two-dimensional semi-Lagrangian Vlasov simulations of laser–plasma interaction in the relativistic regime , 1999, Journal of Plasma Physics.

[58]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[59]  P. John On quantum plasmas , 1995 .

[60]  S. Peter Gary,et al.  The mirror and ion cyclotron anisotropy instabilities , 1992 .

[61]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .