On the Milankovitch sensitivity of the Quaternary deep-sea record

The response of the climate system to external forcing (that is, global warming) has become an item of prime interest, especially with respect to the rate of melting of land-based ice masses. The deep-sea record of ice-age climate change has been useful in assessing the sensitivity of the climate system to a different type of forcing; that is, to orbital forcing, which is well known for the last several million years. The expectation is that the response to one type of forcing will yield information about the likely response to other types of forcing. When comparing response and orbital forcing, one finds that sensitivity to this type of forcing varies greatly through time, evidently in dependence on the state of the system and the associated readiness of the system for change. The changing stability of ice masses is here presumed to be the chief underlying cause for the changing state of the system. A buildup of vulnerable ice masses within the latest Tertiary, when going into the ice ages, is thus here conjectured to cause a stepwise increase of climate variability since the early Pliocene.

[1]  Steven J. Pickering,et al.  Sensitivity of Pliocene Ice Sheets to Orbital Forcing , 2011 .

[2]  H. Schmidt,et al.  22. QUATERNARY OXYGEN ISOTOPE RECORD OF PELAGIC FORAMINIFERS: SITE 806, ONTONG JAVA PLATEAU1 , 1993 .

[3]  W. Berger Sea level in the late Quaternary: patterns of variation and implications , 2008 .

[4]  André Berger,et al.  An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677 , 1990, Transactions of the Royal Society of Edinburgh: Earth Sciences.

[5]  A. Berger Pleistocene climatic variability at astronomical frequencies , 1989 .

[6]  J. Singarayer,et al.  The Mid‐Brunhes Event and West Antarctic ice sheet stability , 2011 .

[7]  John Z. Imbrie,et al.  Modeling the Climatic Response to Orbital Variations , 1980, Science.

[8]  Frederik J. Hilgen,et al.  Extending the astronomical ( polarity) time scale into the Miocene , 1995 .

[9]  J. Nie Coupled 100‐kyr cycles between 3 and 1 Ma in terrestrial and marine paleoclimatic records , 2011 .

[10]  J. Rial,et al.  An outsider's review of the astronomical theory of the climate: is the eccentricity-driven insolation the main driver of the ice ages? , 2001 .

[11]  E. Kauffman,et al.  Fine-Grained Deposits and Biofacies of the Cretaceous Western Interior Seaway: Evidence of Cyclic Sedimentary Processes , 1985 .

[12]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[13]  M. Pagani,et al.  Resolving Milankovitch: Consideration of signal and noise , 2008, American Journal of Science.

[14]  M. Maslin,et al.  Mid-Pleistocene revolution and the ‘eccentricity myth’ , 2005, Geological Society, London, Special Publications.

[15]  C. Emiliani,et al.  Pleistocene Temperatures , 1955, The Journal of Geology.

[16]  Gordon J. F. MacDonald,et al.  Ice Ages and Astronomical Causes: Data, Spectral Analysis and Mechanisms , 2002 .

[17]  Stephen Henry Schneider,et al.  Climate and geo-sciences : a challenge for science and society in the 21st century , 1989 .

[18]  J. Tomkin,et al.  Climate and tectonic controls on glaciated critical-taper orogens , 2007 .

[19]  Peter John Huybers,et al.  Glacial variability over the last two million years: an extended depth-derived agemodel, continuous obliquity pacing, and the Pleistocene progression , 2007 .

[20]  W. Broecker,et al.  The role of ocean-atmosphere reorganizations in glacial cycles , 1989 .

[21]  Carl Wunsch,et al.  Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing , 2006 .

[22]  D. Pollard Some Ice-Age Aspects of a Calving Ice-Sheet Model , 1984 .

[23]  B. Boer,et al.  Dynamics of ~100-kyr glacial cycles during the early Miocene , 2010 .

[24]  J. Laskar,et al.  Stability of the Astronomical Frequencies Over the Earth's History for Paleoclimate Studies , 1992, Science.

[25]  A. Ganopolski,et al.  The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles , 2011 .

[26]  André Berger,et al.  Insolation values for the climate of the last 10 , 1991 .

[27]  André Berger,et al.  On the Structure and Origin of Major Glaciation Cycles .2. the 100,000-year Cycle , 1993 .

[28]  A. Wegener,et al.  Die Klimate der geologischen Vorzeit. , 1925, Nature.

[29]  M. Mudelsee,et al.  Exploring the structure of the mid-Pleistocene revolution with advanced methods of time-series analysis , 1997 .

[30]  N. Pisias,et al.  A new late Neogene time scale : Application to Leg 138 sites , 1995 .

[31]  B. Chao,et al.  Wavelet Spectral Analysis of the Earth’s Orbital Variations and Paleoclimatic Cycles , 1998 .

[32]  Walther Schwarzacher,et al.  Cyclostratigraphy and the Milankovitch theory , 1993 .

[33]  Jan Backman,et al.  Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean , 1989 .

[34]  W. Berger Milankovitch tuning of deep-sea records: Implications for maximum rates of change of sea level , 2013 .

[35]  N. Pisias,et al.  THE EVOLUTION OF PLEISTOCENE CLIMATE: A TIME SERIES APPROACH , 1981 .

[36]  G. Roe,et al.  Why Is Climate Sensitivity So Unpredictable? , 2007, Science.

[37]  Wolfgang H Berger Experimenting with ice-age cycles in a spreadsheet , 1997 .

[38]  M. Loutre,et al.  Climate 400,000 years ago, a key to the future? , 2013 .

[39]  A. Seilacher,et al.  Cycles and Events in Stratigraphy , 1991 .

[40]  Andrew J. Watson,et al.  Is the spectral signature of the 100 kyr glacial cycle consistent with a Milankovitch origin , 1999 .

[41]  G. Wefer,et al.  Expeditions into the Past: Paleoceanographic Studies in the South Atlantic , 1996 .

[42]  M. Loutre,et al.  On the origin of the 100-kyr cycles in the astronomical forcing , 2005 .

[43]  T. Hughes Ice dynamics and deglaciation models when ice sheets collapsed , 1987 .

[44]  J. Beget,et al.  Seven Million Years of Glaciation in Greenland , 1994, Science.

[45]  W. Berger Geologist at sea: aspects of ocean history. , 2011, Annual review of marine science.

[46]  P. Huybers Combined obliquity and precession pacing of late Pleistocene deglaciations , 2011, Nature.

[47]  P. Huybers Pleistocene glacial variability as a chaotic response to obliquity forcing , 2009 .

[48]  J. D. Hays,et al.  Variations in the Earth ' s Orbit : Pacemaker of the Ice Ages Author ( s ) : , 2022 .

[49]  Peter Molnar,et al.  Tectonics, climate, and mountain topography , 2011 .

[50]  Didier Paillard,et al.  The Antarctic ice sheet and the triggering of deglaciations , 2004 .

[51]  V. Brovkin,et al.  Vegetation dynamics amplifies precessional forcing , 2006 .

[52]  Michael Schulz,et al.  The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka , 1997 .

[53]  Lorraine E. Lisiecki,et al.  Links between eccentricity forcing and the 100,000-year glacial cycle , 2010 .

[54]  W. Berggren Late Pliocene-Pleistocene Glaciation , 1972 .

[55]  J. D. Hays,et al.  Milankovitch and Climate: Understanding the Response to Astronomical Forcing , 1984 .

[56]  M. Raymo,et al.  The 41 kyr world: Milankovitch's other unsolved mystery , 2003 .

[57]  W. Berger The 100-kyr ice-age cycle: internal oscillation or inclinational forcing? , 1999 .

[58]  C. Wunsch,et al.  Obliquity pacing of the late Pleistocene glacial terminations , 2005, Nature.

[59]  W. H. Berger,et al.  Neues vom Ontong-Java-Plateau (Westpazifik) , 1992, Naturwissenschaften.

[60]  Kerim H. Nisancioglu,et al.  Plio-Pleistocene Ice Volume, Antarctic Climate, and the Global δ18O Record , 2006, Science.

[61]  Wallace S. Broecker,et al.  Insolation changes, ice volumes, and the O18 record in deep‐sea cores , 1970 .

[62]  F. Anselmetti,et al.  Proceedings of the Ocean Drilling Program. Scientific Results , 2006 .

[63]  F. Sirocko,et al.  Orbital insolation forcing of the Indian Monsoon – a motor for global climate changes? , 2003 .

[64]  E. Boyle,et al.  On the Structure and Origin of Major Glaciation Cycles 1. Linear Responses to Milankovitch Forcing , 1992 .

[65]  E. Jansen,et al.  Reconstruction of glaciation over the past 6 Myr from ice-borne deposits in the Norwegian Sea , 1991, Nature.