A massive galaxy in its core formation phase three billion years after the Big Bang
暂无分享,去创建一个
H. Rix | A. V. D. Wel | S. Wuyts | G. Brammer | P. Dokkum | I. Momcheva | M. Franx | N. Schreiber | L. Tacconi | E. D. Cunha | K. Whitaker | R. Bezanson | R. Skelton | J. Leja | E. Nelson | A. Kirkpatrick | P. V. Dokkum | H. Rix | N. F. Schreiber
[1] J. Trump,et al. KECK-I MOSFIRE SPECTROSCOPY OF COMPACT STAR-FORMING GALAXIES AT z ≳ 2: HIGH VELOCITY DISPERSIONS IN PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2014, 1405.7042.
[2] J. Trump,et al. Keck-I Mosfire Spectroscopy Of Compact Star-Forming Galaxies At Z Greater Than Or Similar To 2: High Velocity Dispersions In Progenitors Of Compact Quiescent Galaxies , 2014 .
[3] J. Trump,et al. KECK-I MOSFIRE SPECTROSCOPY OF COMPACT STAR-FORMING GALAXIES AT z ≳ 2: HIGH VELOCITY DISPERSIONS IN PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2014, 1405.7042.
[4] Max Pettini,et al. STRONG NEBULAR LINE RATIOS IN THE SPECTRA of z ∼ 2–3 STAR FORMING GALAXIES: FIRST RESULTS FROM KBSS-MOSFIRE , 2014, 1405.5473.
[5] S. Wuyts,et al. DENSE CORES IN GALAXIES OUT TO z = 2.5 IN SDSS, UltraVISTA, AND THE FIVE 3D-HST/CANDELS FIELDS , 2014, 1404.4874.
[6] D. Wake,et al. 3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.
[7] Shannon G. Patel,et al. 3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.
[8] K. Schawinski,et al. SUBMILLIMETER GALAXIES AS PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2014, 1401.1510.
[9] D. Elbaz,et al. ALMA reveals a warm and compact starburst around a heavily obscured supermassive black hole at z = 4.75 , 2013, 1312.1248.
[10] S. Belli,et al. VELOCITY DISPERSIONS AND DYNAMICAL MASSES FOR A LARGE SAMPLE OF QUIESCENT GALAXIES AT z > 1: IMPROVED MEASURES OF THE GROWTH IN MASS AND SIZE , 2013, 1311.3317.
[11] A. Dekel,et al. Wet Disc Contraction to Galactic Blue Nuggets and Quenching to Red Nuggets , 2013, 1310.1074.
[12] M. F. Ranx,et al. 3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS AND STELLAR MASSES , 2014 .
[13] Christopher E. Moody,et al. CANDELS+3D-HST: COMPACT SFGs AT z ∼ 2–3, THE PROGENITORS OF THE FIRST QUIESCENT GALAXIES , 2013, 1311.5559.
[14] B. Andrews,et al. EXPLORING THE CHEMICAL LINK BETWEEN LOCAL ELLIPTICALS AND THEIR HIGH-REDSHIFT PROGENITORS , 2013, 1310.7020.
[15] S. Ravindranath,et al. THE PROGENITORS OF THE COMPACT EARLY-TYPE GALAXIES AT HIGH REDSHIFT , 2013, 1310.3819.
[16] A. Dekel,et al. Toy models for galaxy formation versus simulations , 2013, 1303.3009.
[17] P. Dokkum,et al. MASSIVE AND NEWLY DEAD: DISCOVERY OF A SIGNIFICANT POPULATION OF GALAXIES WITH HIGH-VELOCITY DISPERSIONS AND STRONG BALMER LINES AT z ∼ 1.5 FROM DEEP KECK SPECTRA AND HST/WFC3 IMAGING , 2012, 1210.7236.
[18] R. Davé,et al. LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT z ≈ 8 DISCOVERED IN THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY , 2012 .
[19] H. Rix,et al. STELLAR KINEMATICS OF z ∼ 2 GALAXIES AND THE INSIDE-OUT GROWTH OF QUIESCENT GALAXIES, , 2012, 1211.3424.
[20] D. Elbaz,et al. GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT , 2012, The Astrophysical Journal.
[21] A. Cimatti,et al. GMASS ultradeep spectroscopy of galaxies at z ~ 2 - VII. Sample selection and spectroscopy , 2012, 1209.1561.
[22] Garth D. Illingworth,et al. 3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.
[23] L. Cowie,et al. A KS AND IRAC SELECTION OF HIGH-REDSHIFT EXTREMELY RED OBJECTS , 2011, 1110.0690.
[24] A. Koekemoer,et al. GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.
[25] B. Magnelli,et al. PACS Evolutionary Probe (PEP) – a Herschel key program , 2011, 1106.3285.
[26] B. Lundgren,et al. THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z ∼ 3 , 2011, 1105.4609.
[27] S. Ravindranath,et al. CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.
[28] D. Calzetti,et al. GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.
[29] Jeremiah P. Ostriker,et al. THE TWO PHASES OF GALAXY FORMATION , 2010, 1010.1381.
[30] T. Treu,et al. KECK SPECTROSCOPY OF z>1 FIELD SPHEROIDALS: DYNAMICAL CONSTRAINTS ON THE GROWTH RATE OF RED “NUGGETS” , 2010, 1004.1331.
[31] Garth D. Illingworth,et al. CONFIRMATION OF THE COMPACTNESS OF A z = 1.91 QUIESCENT GALAXY WITH HUBBLE SPACE TELESCOPE’S WIDE FIELD CAMERA 3 , 2010, 1004.1411.
[32] P. Dokkum,et al. A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186 , 2009, Nature.
[33] Garth D. Illingworth,et al. AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.
[34] Shy Genel,et al. THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.
[35] D. Elbaz,et al. A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.
[36] G. Zamorani,et al. GMASS ultradeep spectroscopy of galaxies at $z$ ~ 2 - II. Superdense passive galaxies: how did they form and evolve? , 2008, 0801.1184.
[37] Garth D. Illingworth,et al. Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.
[38] A. Cimatti,et al. Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.
[39] M.,et al. Passively Evolving Early-type Galaxies at 1.4 < ∼ Z < ∼ 2.5 in the Hubble Ultra Deep Field , 2008 .
[40] A. Cimatti,et al. NICMOS measurements of the near-infrared background , 2007, 0712.2880.
[41] M. Franx,et al. Hubble Space Telescope and Spitzer Imaging of Red and Blue Galaxies at z ~ 2.5: A Correlation between Size and Star Formation Activity from Compact Quiescent Galaxies to Extended Star-forming Galaxies , 2007, 0707.4484.
[42] Rodger I. Thompson,et al. NICMOS measurements of the near-infrared background , 2007 .
[43] C. Steidel,et al. Hα Observations of a Large Sample of Galaxies at z ~ 2: Implications for Star Formation in High-Redshift Galaxies , 2006, astro-ph/0604388.
[44] P. P. van der Werf,et al. The Size Evolution of Galaxies since z~3: Combining SDSS, GEMS, and FIRES , 2005, astro-ph/0504225.
[45] A. Cimatti,et al. Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.
[46] J. Brinkmann,et al. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.
[47] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[48] Marat Gilfanov,et al. High mass x-ray binaries as a star formation rate indicator in distant galaxies , 2002 .
[49] G. Bertin,et al. Weak homology of elliptical galaxies , 2002, astro-ph/0202208.
[50] Jr.,et al. STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.
[51] Jr.,et al. The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.
[52] W. N. B. randt,et al. The Chandra Deep Field-north Survey. Xiii. 2 Ms Point-source Catalogs , 2022 .