A massive galaxy in its core formation phase three billion years after the Big Bang

[1]  J. Trump,et al.  KECK-I MOSFIRE SPECTROSCOPY OF COMPACT STAR-FORMING GALAXIES AT z ≳ 2: HIGH VELOCITY DISPERSIONS IN PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2014, 1405.7042.

[2]  J. Trump,et al.  Keck-I Mosfire Spectroscopy Of Compact Star-Forming Galaxies At Z Greater Than Or Similar To 2: High Velocity Dispersions In Progenitors Of Compact Quiescent Galaxies , 2014 .

[3]  J. Trump,et al.  KECK-I MOSFIRE SPECTROSCOPY OF COMPACT STAR-FORMING GALAXIES AT z ≳ 2: HIGH VELOCITY DISPERSIONS IN PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2014, 1405.7042.

[4]  Max Pettini,et al.  STRONG NEBULAR LINE RATIOS IN THE SPECTRA of z ∼ 2–3 STAR FORMING GALAXIES: FIRST RESULTS FROM KBSS-MOSFIRE , 2014, 1405.5473.

[5]  S. Wuyts,et al.  DENSE CORES IN GALAXIES OUT TO z = 2.5 IN SDSS, UltraVISTA, AND THE FIVE 3D-HST/CANDELS FIELDS , 2014, 1404.4874.

[6]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[7]  Shannon G. Patel,et al.  3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR MASSES , 2014, 1403.3689.

[8]  K. Schawinski,et al.  SUBMILLIMETER GALAXIES AS PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2014, 1401.1510.

[9]  D. Elbaz,et al.  ALMA reveals a warm and compact starburst around a heavily obscured supermassive black hole at z = 4.75 , 2013, 1312.1248.

[10]  S. Belli,et al.  VELOCITY DISPERSIONS AND DYNAMICAL MASSES FOR A LARGE SAMPLE OF QUIESCENT GALAXIES AT z > 1: IMPROVED MEASURES OF THE GROWTH IN MASS AND SIZE , 2013, 1311.3317.

[11]  A. Dekel,et al.  Wet Disc Contraction to Galactic Blue Nuggets and Quenching to Red Nuggets , 2013, 1310.1074.

[12]  M. F. Ranx,et al.  3D-HST WFC3-SELECTED PHOTOMETRIC CATALOGS IN THE FIVE CANDELS/3D-HST FIELDS: PHOTOMETRY, PHOTOMETRIC REDSHIFTS AND STELLAR MASSES , 2014 .

[13]  Christopher E. Moody,et al.  CANDELS+3D-HST: COMPACT SFGs AT z ∼ 2–3, THE PROGENITORS OF THE FIRST QUIESCENT GALAXIES , 2013, 1311.5559.

[14]  B. Andrews,et al.  EXPLORING THE CHEMICAL LINK BETWEEN LOCAL ELLIPTICALS AND THEIR HIGH-REDSHIFT PROGENITORS , 2013, 1310.7020.

[15]  S. Ravindranath,et al.  THE PROGENITORS OF THE COMPACT EARLY-TYPE GALAXIES AT HIGH REDSHIFT , 2013, 1310.3819.

[16]  A. Dekel,et al.  Toy models for galaxy formation versus simulations , 2013, 1303.3009.

[17]  P. Dokkum,et al.  MASSIVE AND NEWLY DEAD: DISCOVERY OF A SIGNIFICANT POPULATION OF GALAXIES WITH HIGH-VELOCITY DISPERSIONS AND STRONG BALMER LINES AT z ∼ 1.5 FROM DEEP KECK SPECTRA AND HST/WFC3 IMAGING , 2012, 1210.7236.

[18]  R. Davé,et al.  LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT z ≈ 8 DISCOVERED IN THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY , 2012 .

[19]  H. Rix,et al.  STELLAR KINEMATICS OF z ∼ 2 GALAXIES AND THE INSIDE-OUT GROWTH OF QUIESCENT GALAXIES, , 2012, 1211.3424.

[20]  D. Elbaz,et al.  GOODS-HERSCHEL: IMPACT OF ACTIVE GALACTIC NUCLEI AND STAR FORMATION ACTIVITY ON INFRARED SPECTRAL ENERGY DISTRIBUTIONS AT HIGH REDSHIFT , 2012, The Astrophysical Journal.

[21]  A. Cimatti,et al.  GMASS ultradeep spectroscopy of galaxies at z ~ 2 - VII. Sample selection and spectroscopy , 2012, 1209.1561.

[22]  Garth D. Illingworth,et al.  3D-HST: A WIDE-FIELD GRISM SPECTROSCOPIC SURVEY WITH THE HUBBLE SPACE TELESCOPE , 2012, 1204.2829.

[23]  L. Cowie,et al.  A KS AND IRAC SELECTION OF HIGH-REDSHIFT EXTREMELY RED OBJECTS , 2011, 1110.0690.

[24]  A. Koekemoer,et al.  GALAXY STRUCTURE AND MODE OF STAR FORMATION IN THE SFR–MASS PLANE FROM z ∼ 2.5 TO z ∼ 0.1 , 2011, 1107.0317.

[25]  B. Magnelli,et al.  PACS Evolutionary Probe (PEP) – a Herschel key program , 2011, 1106.3285.

[26]  B. Lundgren,et al.  THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z ∼ 3 , 2011, 1105.4609.

[27]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[28]  D. Calzetti,et al.  GOODS–Herschel: an infrared main sequence for star-forming galaxies , 2011, 1105.2537.

[29]  Jeremiah P. Ostriker,et al.  THE TWO PHASES OF GALAXY FORMATION , 2010, 1010.1381.

[30]  T. Treu,et al.  KECK SPECTROSCOPY OF z>1 FIELD SPHEROIDALS: DYNAMICAL CONSTRAINTS ON THE GROWTH RATE OF RED “NUGGETS” , 2010, 1004.1331.

[31]  Garth D. Illingworth,et al.  CONFIRMATION OF THE COMPACTNESS OF A z = 1.91 QUIESCENT GALAXY WITH HUBBLE SPACE TELESCOPE’S WIDE FIELD CAMERA 3 , 2010, 1004.1411.

[32]  P. Dokkum,et al.  A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186 , 2009, Nature.

[33]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[34]  Shy Genel,et al.  THE SINS SURVEY: SINFONI INTEGRAL FIELD SPECTROSCOPY OF z ∼ 2 STAR-FORMING GALAXIES , 2009, 0903.1872.

[35]  D. Elbaz,et al.  A simple model to interpret the ultraviolet, optical and infrared emission from galaxies , 2008, 0806.1020.

[36]  G. Zamorani,et al.  GMASS ultradeep spectroscopy of galaxies at $z$ ~ 2 - II. Superdense passive galaxies: how did they form and evolve? , 2008, 0801.1184.

[37]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[38]  A. Cimatti,et al.  Submillimeter Galaxies at z ~ 2: Evidence for Major Mergers and Constraints on Lifetimes, IMF, and CO-H2 Conversion Factor , 2008, 0801.3650.

[39]  M.,et al.  Passively Evolving Early-type Galaxies at 1.4 < ∼ Z < ∼ 2.5 in the Hubble Ultra Deep Field , 2008 .

[40]  A. Cimatti,et al.  NICMOS measurements of the near-infrared background , 2007, 0712.2880.

[41]  M. Franx,et al.  Hubble Space Telescope and Spitzer Imaging of Red and Blue Galaxies at z ~ 2.5: A Correlation between Size and Star Formation Activity from Compact Quiescent Galaxies to Extended Star-forming Galaxies , 2007, 0707.4484.

[42]  Rodger I. Thompson,et al.  NICMOS measurements of the near-infrared background , 2007 .

[43]  C. Steidel,et al.  Hα Observations of a Large Sample of Galaxies at z ~ 2: Implications for Star Formation in High-Redshift Galaxies , 2006, astro-ph/0604388.

[44]  P. P. van der Werf,et al.  The Size Evolution of Galaxies since z~3: Combining SDSS, GEMS, and FIRES , 2005, astro-ph/0504225.

[45]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[46]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[47]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[48]  Marat Gilfanov,et al.  High mass x-ray binaries as a star formation rate indicator in distant galaxies , 2002 .

[49]  G. Bertin,et al.  Weak homology of elliptical galaxies , 2002, astro-ph/0202208.

[50]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[51]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[52]  W. N. B. randt,et al.  The Chandra Deep Field-north Survey. Xiii. 2 Ms Point-source Catalogs , 2022 .