Glycylglycin‐Rotaxane — Wasserstoffbrückenvermittelte Selbstorganisation synthetischer Peptid‐Rotaxane

[1]  T. Blundell,et al.  Topological similarities in TGF-beta 2, PDGF-BB and NGF define a superfamily of polypeptide growth factors. , 1993, Structure.

[2]  F. Vögtle,et al.  TEMPLATE SYNTHESIS OF THE FIRST AMIDE-BASED ROTAXANES , 1995 .

[3]  F. Vögtle,et al.  Isomeric Lactam Catenanes and the Mechanism of their Formation , 1994 .

[4]  David A. Leigh,et al.  Strukturell variantenreiche und dynamisch vielseitige Benzylamid‐[2]Catenane, die direkt aus kommerziell erhältlichen Ausgangsmaterialien zugänglich sind , 1995 .

[5]  David A. Leigh,et al.  Facile Synthesis and Solid-State Structure of a Benzylic Amide [2]Catenane† , 1995 .

[6]  D. C. Harris,et al.  Crystal structure of human chorionic gonadotropin , 1994, Nature.

[7]  H. Nozaki,et al.  Novel template effects of distannoxane catalysts in highly efficient transesterification and esterification , 1991 .

[8]  F. Vögtle,et al.  Catenanes and rotaxanes of the amide type , 1996 .

[9]  Alexandra M. Z. Slawin,et al.  Catenane Chameleons: Environment‐Sensitive Translational Isomerism in Amphiphilic Benzylic Amide [2]Catenanes , 1996 .

[10]  B H Robinson,et al.  The design of a biochip: a self-assembling molecular-scale memory device. , 1987, Protein engineering.

[11]  David A. Leigh,et al.  Structurally Diverse and Dynamically Versatile Benzylic Amide [2]Catenanes Assembled Directly from Commercially Available Precursors , 1995 .

[12]  N. Seeman,et al.  Synthesis from DNA of a molecule with the connectivity of a cube , 1991, Nature.

[13]  David A. Leigh,et al.  Catenan‐Chamäleons: von der Umgebung abhängige Translationsisomerie amphiphiler Benzylamid‐[2]Catenane , 1996 .

[14]  N. Seeman Construction of three-dimensional stick figures from branched DNA. , 1991, DNA and cell biology.

[15]  K. Mislow,et al.  Knots in Proteins , 1994 .

[16]  N. Seeman,et al.  Construction of a DNA-Truncated Octahedron , 1994 .

[17]  Jean-Pierre Sauvage,et al.  Interlocked and Knotted Rings in Biology and Chemistry , 1991 .

[18]  M. Grütter,et al.  Refined Crystal Structure of Human Transforming Growth Factor β2 at 1·5 Å Resolution , 1993 .

[19]  David A. Leigh,et al.  Einfache Synthese eines Benzylamid-[2]Catenans und seine Festkörperstruktur† , 1995 .

[20]  K. Mislow,et al.  Topological Chirality of Proteins , 1994 .

[21]  Christopher A. Hunter,et al.  Ein makrocyclischer Rezeptor für zwei Chinonmoleküle , 1992 .

[22]  D. Tomalia,et al.  Genealogically directed synthesis: Starburst/cascade dendrimers and hyperbranched structures , 1993 .

[23]  F. Vögtle,et al.  A [3]Rotaxane of the Amide Type , 1996 .

[24]  Fritz Vögtle,et al.  Catenanes and rotaxanes of the amide type , 1996 .

[25]  C. Hunter,et al.  A Binary Quinone Receptor , 1992 .

[26]  Peter Murray-Rust,et al.  Directional hydrogen bonding to sp2- and sp3-hybridized oxygen atoms and its relevance to ligand-macromolecule interactions , 1984 .

[27]  T Koller,et al.  Duplex DNA knots produced by Escherichia coli topoisomerase I. Structure and requirements for formation. , 1985, The Journal of biological chemistry.

[28]  F. Vögtle,et al.  Isomere Catenane vom Lactamtyp und ihr Bildungsmechanismus , 1994 .

[29]  K. Mislow,et al.  TOPOLOGICAL FEATURES OF PROTEIN STRUCTURES : KNOTS AND LINKS , 1995 .

[30]  Olga Kennard,et al.  Geometry of the imino-carbonyl (N-H...O:C) hydrogen bond. 1. Lone-pair directionality , 1983 .

[31]  E. Arnett,et al.  Basicity. Comparison of hydrogen bonding and proton transfer to some Lewis bases , 1974 .

[32]  S. Kamitori,et al.  A Real Knot in Protein , 1996 .

[33]  W. Hendrickson,et al.  A structural superfamily of growth factors containing a cystine knot motif , 1993, Cell.

[34]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[35]  David A. Leigh,et al.  The Synthesis and Solubilization of Amide Macrocycles via Rotaxane Formation , 1996 .