Towards a Large Set of Steiner Quadruple Systems

Let $D( v )$ be the number of pairwise disjoint Steiner quadruple systems. A simple counting argument shows that $D( v )\leqq v - 3$. In this paper it is proved that $D( 2^k n )\geqq ( 2^k - 1 ) n,k\geqq 2$, if there exists a set of $3n$ pairwise disjoint Steiner quadruple systems of order $4n$ with a certain structure. This implies that $D( v )\geqq v - o( v )$ for infinitely many values of v. New lower bounds on $D( v )$ for many values of v that are not divisible by 4 are also given, and it is proved that $D( v )\geqq 2$ for all $v \equiv 2$ or $4(\bmod 6 ),v\geqq 8$.

[1]  Alan Hartman,et al.  Intersections of Steiner quadruple systems , 1992, Discret. Math..

[2]  Alexander Rosa,et al.  Steiner quadruple systems - a survey , 1978, Discret. Math..

[3]  N. J. A. Sloane,et al.  A new table of constant weight codes , 1990, IEEE Trans. Inf. Theory.

[4]  Alan Hartman,et al.  Intersections and supports of quadruple systems , 1991, Discret. Math..

[5]  Haim Hanani,et al.  On Some Tactical Configurations , 1963, Canadian Journal of Mathematics.

[6]  Dale M. Mesner,et al.  Intersections Among Steiner Systems , 1974, J. Comb. Theory, Ser. A.

[7]  Alan Hartman A General Recursive Construction for Quadruple Systems , 1982, J. Comb. Theory, Ser. A.

[8]  Alan Hartman,et al.  Covering triples by quadruples: An asymptotic solution , 1986, J. Comb. Theory, Ser. A.

[9]  Haim Hanani,et al.  On Quadruple Systems , 1960, Canadian Journal of Mathematics.