GRB 060607A: A GRB with Bright Asynchronous Early $X$-ray and Optical Emissions

The early optical emission of the moderately high redshift ($z=3.08$) GRB 060607A shows a remarkable broad and strong peak with a rapid rise and a relatively slow power-law decay. It is not coincident with the strong early-time flares seen in the X-ray and gamma-ray energy bands. There is weak evidence for variability superposed on this dominant component in several optical bands that can be related to flares in high energy bands. While for a small number of GRBs, well-sampled optical flares have been observed simultaneously with X-ray and gamma ray pulses, GRB 060607A is one of the few cases where the early optical emission shows no significant evidence for correlation with the prompt emission. In this work we first report in detail the broad band observations of this burst by Swift. Then by applying a simple model for the dynamics and the synchrotron radiation of a relativistic shock, we show that the dominant component of the early emissions in optical wavelengths has the same origin as the tail emission produced after the main gamma ray activity. The most plausible explanation for the peak in the optical light curve seems to be the cooling of the prompt after the main collisions, shifting the characteristic synchrotron frequency to the optical bands. It seems that the cooling process requires a steepening of the electron energy distribution and/or a break in this distribution at high energies. The sharp break in the X-ray light curve at few thousands of seconds after the trigger, is not observed in the IR/optical/UV bands, and therefore can not be a jet break. Either the X-ray break is due to a change in the spectrum of the accelerated electrons or the lack of an optical break is due to the presence of a related delayed response component (Abbreviated).

[1]  John David Jackson,et al.  Classical Electrodynamics , 2020, Nature.

[2]  Bing Zhang,et al.  Apparent Spectral Evolution of GRB X‐ray Tails , 2008 .

[3]  J. P. Osborne,et al.  Swift captures the spectrally evolving prompt emission of GRB 070616 , 2007, 0711.3753.

[4]  Mullard Space Science Laboratory,et al.  Accurate early positions for Swift GRBs: enhancing X-ray positions with UVOT astrometry , 2007, 0708.0986.

[5]  Bing Zhang,et al.  A Comprehensive Analysis of Swift XRT Data. II. Diverse Physical Origins of the Shallow Decay Segment , 2007, 0705.1373.

[6]  T. Sakamoto,et al.  GRB 061121: Broadband Spectral Evolution through the Prompt and Afterglow Phases of a Bright Burst , 2007, 0704.1609.

[7]  P. Jakobsson,et al.  Very Different X-Ray-to-Optical Column Density Ratios in γ-Ray Burst Afterglows: Ionization in GRB Environments , 2007, astro-ph/0702537.

[8]  S. B. Pandey,et al.  The nature of the outflow in gamma-ray bursts , 2007, astro-ph/0702319.

[9]  A. J. Castro-Tirado,et al.  Optical observations of GRB 060124 afterglow: a case for an injection break , 2007, astro-ph/0701413.

[10]  J. P. Osborne,et al.  Swift multi-wavelength observations of the bright flaring burst GRB 051117A , 2006, astro-ph/0612661.

[11]  P. Conconi,et al.  REM observations of GRB 060418 and GRB 060607A: the onset of the afterglow and the initial fireball Lorentz factor determination , 2006, astro-ph/0612607.

[12]  Bing Zhang,et al.  A Comprehensive Analysis of Swift XRT Data. I. Apparent Spectral Evolution of Gamma-Ray Burst X-Ray Tails , 2006, astro-ph/0612246.

[13]  M. Hoshino,et al.  Electron Injection at High Mach Number Quasi-perpendicular Shocks: Surfing and Drift Acceleration , 2006, astro-ph/0612204.

[14]  N. Gehrels,et al.  Testing the Standard Fireball Model of Gamma-Ray Bursts Using Late X-Ray Afterglows Measured by Swift , 2006, astro-ph/0612031.

[15]  J. Prieto,et al.  Exploring Broadband GRB Behavior during γ-Ray Emission , 2006, astro-ph/0611414.

[16]  B.Zhang,et al.  Extreme Properties Of GRB061007: A Highly Energetic OR Highly Collimated Burst? , 2006, astro-ph/0611089.

[17]  F. Rieger,et al.  Fermi acceleration in astrophysical jets , 2006, astro-ph/0610141.

[18]  P. Schady,et al.  Dust and gas in the local environments of gamma-ray bursts , 2006, astro-ph/0702122.

[19]  University of North Carolina,et al.  Optical and X-Ray Observations of GRB 060526: A Complex Afterglow Consistent with an Achromatic Jet Break , 2006, astro-ph/0609269.

[20]  B. Reville,et al.  A current-driven instability in parallel, relativistic shocks , 2006, astro-ph/0608462.

[21]  N. R. Butler,et al.  When Do Internal Shocks End and External Shocks Begin? Early-Time Broadband Modeling of GRB 051111 , 2006, astro-ph/0606763.

[22]  T. Sakamoto,et al.  Energy input and response from prompt and early optical afterglow emission in γ-ray bursts , 2006, Nature.

[23]  J. Fynbo,et al.  Optical, Infrared, and Ultraviolet Observations of the X-Ray Flash XRF 050416A , 2006, astro-ph/0604316.

[24]  P. Giommi,et al.  Panchromatic study of GRB 060124: From precursor to afterglow , 2006, astro-ph/0602497.

[25]  N. Gehrels,et al.  Testing the Curvature Effect and Internal Origin of Gamma-Ray Burst Prompt Emissions and X-Ray Flares with Swift Data , 2006, astro-ph/0602142.

[26]  N. Gehrels,et al.  The Early X-Ray Emission from GRBs , 2006, astro-ph/0601125.

[27]  D. A. Kann,et al.  Signatures of Extragalactic Dust in Pre-Swift GRB Afterglows , 2005, astro-ph/0512575.

[28]  E. L. Robinson,et al.  No universality for the electron power-law index (p) in gamma-ray bursts and other relativistic sources , 2005, astro-ph/0512489.

[29]  K. Ioka,et al.  Efficiency Crisis of Swift Gamma-Ray Bursts with Shallow X-ray Afterglows : Prior Activity or Time-Dependent Microphysics? , 2005, astro-ph/0511749.

[30]  N. Gehrels,et al.  Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data , 2005, astro-ph/0508332.

[31]  N. Gehrels,et al.  Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations , 2005, astro-ph/0508321.

[32]  E E Fenimore,et al.  A link between prompt optical and prompt γ-ray emission in γ-ray bursts , 2005, Nature.

[33]  Paolo Conconi,et al.  REM: a fully robotic telescope for GRB observations , 2004, SPIE Astronomical Telescopes + Instrumentation.

[34]  Andreas Kelz,et al.  Development of the wide-field IFU PPak , 2004, SPIE Astronomical Telescopes + Instrumentation.

[35]  A. Achterberg,et al.  Magnetic field generation in relativistic shocks - An early end of the exponential Weibel instability in electron-proton plasmas , 2004, astro-ph/0408550.

[36]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[37]  Scott D. Barthelmy,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.

[38]  Tsvi Piran,et al.  Early afterglow emission from a reverse shock as a diagnostic tool for gamma-ray burst outflows , 2004, astro-ph/0403461.

[39]  L. A. Antonelli,et al.  Absorption in Gamma-Ray Burst Afterglows , 2004, astro-ph/0403149.

[40]  A. Achterberg,et al.  Magnetic Field Generation in Relativistic Shocks , 2003, astro-ph/0312208.

[41]  E. Rol,et al.  Very High Column Density and Small Reddening toward GRB 020124 at z = 3.20 , 2003, astro-ph/0307331.

[42]  R. Perna,et al.  Time-dependent Photoionization in a Dusty Medium. II. Evolution of Dust Distributions and Optical Opacities , 2002, astro-ph/0211235.

[43]  E. Rykoff,et al.  The ROTSE‐III Robotic Telescope System , 2002, astro-ph/0210238.

[44]  W. T. Vestrand,et al.  The RAPTOR experiment: a system for monitoring the optical sky in real time , 2002, SPIE Astronomical Telescopes + Instrumentation.

[45]  T. Piran,et al.  Time-scales in long gamma-ray bursts , 2002 .

[46]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[47]  Michel Boer,et al.  Agile telescopes to monitor optical transients and sky variability: From TAROT to ARAGO , 2001 .

[48]  Bing Zhang,et al.  Gamma-Ray Bursts with Continuous Energy Injection and Their Afterglow Signature , 2001, astro-ph/0108402.

[49]  John G. Kirk,et al.  Particle acceleration by ultrarelativistic shocks: theory and simulations , 2001, astro-ph/0107530.

[50]  Ehud NakarTsvi Piran Time Scales in Long GRBs , 2001, astro-ph/0103210.

[51]  S. Djorgovski,et al.  Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir , 2001, astro-ph/0102282.

[52]  P. Vreeswijk,et al.  The optical afterglow and host galaxy of GRB 000926 , 2001, astro-ph/0102158.

[53]  T. Lu,et al.  Can all breaks in GRB afterglows be explained by jet effects? , 2000, astro-ph/0012007.

[54]  M. IoA,et al.  Fe Kα Emission from a Decaying Magnetar Model of Gamma-Ray Bursts , 2000, astro-ph/0010258.

[55]  A. Merloni,et al.  Quiescent times in gamma-ray bursts — I. An observed correlation between the durations of subsequent emission episodes , 2000, astro-ph/0010218.

[56]  A. Merloni,et al.  Quiescent times in gamma-ray bursts – II. Dormant periods in the central engine? , 2000, astro-ph/0010219.

[57]  J. Fynbo,et al.  The afterglow of the short/intermediate-duration gamma-ray burst GRB 000301C: A jet at z = 2:04 ?;??;??? , 2000, astro-ph/0005609.

[58]  P. Mészáros,et al.  Impulsive and Varying Injection in Gamma-Ray Burst Afterglows , 2000, Astrophysical Journal.

[59]  B. Draine,et al.  Dust Sublimation by Gamma-ray Bursts and Its Implications , 1999, astro-ph/9909020.

[60]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[61]  J. Rhoads The Dynamics and Light Curves of Beamed Gamma-Ray Burst Afterglows , 1999, astro-ph/9903399.

[62]  T. Piran,et al.  Jets in Gamma-Ray Bursts , 1999, astro-ph/9903339.

[63]  G. Gisler,et al.  Observation of contemporaneous optical radiation from a γ-ray burst , 1999, Nature.

[64]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[65]  Martin J. Rees,et al.  Refreshed Shocks and Afterglow Longevity in Gamma-Ray Bursts , 1998 .

[66]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[67]  E. I. Robson,et al.  Multiwavelength Observations of a Dramatic High-Energy Flare in the Blazar 3C 279 , 1997, astro-ph/9711243.

[68]  Re'em Sari,et al.  Hydrodynamics of Gamma-Ray Burst Afterglow , 1997 .

[69]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[70]  M. Ostrowski,et al.  The acceleration time-scale for first-order Fermi acceleration in relativistic shock waves , 1996, astro-ph/9608078.

[71]  E. Fenimore,et al.  Expanding Relativistic Shells and Gamma-Ray Burst Temporal Structure , 1996, astro-ph/9607163.

[72]  Cambridge,et al.  Cooling Timescales and Temporal Structure of Gamma-Ray Bursts , 1996, astro-ph/9605005.

[73]  A. Langdon,et al.  Evolution of the Weibel instability in relativistically hot electron–positron plasmas , 1994 .

[74]  M. Rees,et al.  Unsteady outflow models for cosmological gamma-ray bursts , 1994, astro-ph/9404038.

[75]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[76]  Jean. Steinier,et al.  Smoothing and differentiation of data by simplified least square procedure. , 1964, Analytical chemistry.

[77]  Preprint typeset using L ATEX style emulateapj v. 04/03/99 JETS IN GRBS , 2008 .

[78]  J. S. Ollerman,et al.  VERY DIFFERENT X-RAY TO OPTICAL COLUMN DENSITY RATIOS INγ-RAY BURST AFTERGLOWS: IONISATION IN GRB ENVIRONMENTS , 2007 .

[79]  Bing Zhang,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 6/22/04 GAMMA-RAY BURST EARLY AFTERGLOWS: REVERSE SHOCK EMISSION FROM AN ARBITRARILY MAGNETIZED EJECTA , 2005 .

[80]  Y. A. Gallant,et al.  Particle Acceleration at Ultrarelativistic Shocks: An Eigenfunction Method , 2000, astro-ph/0005222.

[81]  P. Mészáros,et al.  1 2 7 M ar 2 00 0 Impulsive and Varying Injection in GRB Afterglows , 2000 .

[82]  Jeannette Barnes,et al.  Astronomical Data Analysis Software and Systems V , 1996 .

[83]  J. Haislip,et al.  PROMPT OBSERVATIONS OF THE EARLY-TIME OPTICAL AFTERGLOW OF GRB 060607A , 2007, 0708.3444.