Dry-reforming of ethanol in the presence of a 316 stainless steel catalyst

Dry-reforming is a known process for the production of synthetic gas from natural gas or other volatile fossil fuels. Another possible application is the reforming of hydrocarbons contained in the synthetic gas produced from biomass or waste gasification. The absence of wide industrial process applications is mainly due to the high endothermicity of the reactions involved and technical problems associated with carbon formation. In this work, the target reaction is: The principal challenge is that of using a 2D catalyst formulation favouring the target reaction and permitting easy retrieval of deposited carbon while, at the same time, preserving the catalyst's activity and structural integrity. This paper presents the results obtained from the use of a 316 stainless steel catalyst. The catalyst is active in ethanol dry reforming as the yield of hydrogen reached 98% of the theoretical value. Moreover, the co-product carbon is of a filamentous form and can be easily retrieved without risk of modification to the catalyst properties. This catalyst is recyclable; it can be used several times over in the dry-reforming of ethanol process without detectable change in its activity and selectivity. Le reformage a sec est un procede connu pour la production du gaz de synthese a partir du gaz naturel ou autres combustibles fossiles volatils. Une autre application possible est le reformage des hydrocarbures contenus dans le gaz de synthese produit par la gazeification de la biomasse ou de dechets. L'absence de larges applications de procedes industriels est essentiellement due a la haute endothermicite des reactions impliquees et aux problemes techniques associes a la formation de carbone. Dans ce travail, la reaction ciblee est Le principal defi reside dans l'utilisation d'une formulation de catalyseur 2D favorisant la reaction visee et permettant un retrait facile du carbone depose tout en preservant l'activite du catalyseur et l'integrite de la structure. On presente dans cet article les resultats obtenus a partir d'un catalyseur acier inoxydable 316. Le catalyseur est actif dans le reformage a sec d'ethanol alors que le rendement d'hydrogene atteint 98% de la valeur theorique. En outre, le carbone du co-produit est d'une forme filamenteuse et peut etre facilement retiree sans risque de modification des proprietes du catalyseur. Ce catalyseur est recyclable; il peut etre utilise plusieurs fois dans le reformage a sec du procede d'ethanol sans changement detectable dans son activite et selectivite.

[1]  M. A. Laborde,et al.  Hydrogen production by the steam reforming of ethanol: Thermodynamic analysis , 1991 .

[2]  Xenophon E. Verykios,et al.  Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts , 2003 .

[3]  P. Umasankar,et al.  Steam reforming of ethanol for hydrogen production : thermodynamic analysis , 1996 .

[4]  S. Freni,et al.  Ethanol steam reforming in a molten carbonate fuel cell. A preliminary kinetic investigation , 1996 .

[5]  X. Verykios,et al.  Carbon and Oxygen Reaction Pathways of CO2 Reforming of Methane over Ni/La2O3 and Ni/Al2O3 Catalysts Studied by Isotopic Tracing Techniques , 1999 .

[6]  E. Ruckenstein,et al.  CO2 reforming of CH4 over Co/MgO solid solution catalysts — effect of calcination temperature and Co loading , 2001 .

[7]  A. Kiennemann,et al.  Efficient hydrogen production by ethanol reforming over Rh catalysts. Effect of addition of Zr on CeO2 for the oxidation of CO to CO2 , 2004 .

[8]  M. Bradford,et al.  CO2 Reforming of CH4 , 1999 .

[9]  G. Maggio,et al.  Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study , 1998 .

[10]  E. Ruckenstein,et al.  Partial Oxidation of Methane to Synthesis Gas over Alkaline Earth Metal Oxide Supported Cobalt Catalysts , 2001 .

[11]  A. Kaddouri,et al.  A study of the influence of the synthesis conditions upon the catalytic properties of Co/SiO2 or Co/Al2O3 catalysts used for ethanol steam reforming , 2004 .

[12]  S. Freni,et al.  Catalytic partial oxidation of methane in a molten carbonate fuel cell , 1999 .

[13]  Y. Schuurman,et al.  A transient kinetic study of the carbon dioxide reforming of methane over supported Ru catalysts , 1999 .

[14]  Panagiotis Tsiakaras,et al.  Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol , 2001 .

[15]  J. Fierro,et al.  New catalytic routes for syngas and hydrogen production , 1996 .

[16]  Stefano Cavallaro,et al.  Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst , 2003 .

[17]  J. Armor,et al.  The multiple roles for catalysis in the production of H2 , 1999 .

[18]  E. Ruckenstein,et al.  Carbon Deposition and Catalytic Deactivation during CO2 Reforming of CH4 over Co/γ-Al2O3 Catalysts , 2002 .

[19]  X. Verykios,et al.  Renewable Hydrogen from Ethanol by Autothermal Reforming , 2004, Science.

[20]  Jens R. Rostrup-Nielsen,et al.  Conversion of hydrocarbons and alcohols for fuel cells , 2002 .

[21]  D. Duprez,et al.  Le vaporeformage catalytique : application a la production embarquee d'hydrogene a partir d'hydrocarbures ou d'alcools , 2001 .