Petermann-factor sensitivity limit near an exceptional point in a Brillouin ring laser gyroscope

[1]  Kerry Vahala,et al.  Observation of the exceptional-point-enhanced Sagnac effect , 2019, Nature.

[2]  Mohammad P. Hokmabadi,et al.  Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity , 2019, Nature.

[3]  Zhipeng Li,et al.  Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point , 2019, Nature Electronics.

[4]  D. Christodoulides,et al.  The dawn of non-Hermitian optics , 2019, Communications Physics.

[5]  Kerry Vahala,et al.  Enhanced sensitivity operation of an optical gyroscope near an exceptional point , 2019, 1901.08217.

[6]  M. Miri,et al.  Exceptional points in optics and photonics , 2019, Science.

[7]  Ren-Bao Liu,et al.  Sensitivity of parameter estimation near the exceptional point of a non-Hermitian system , 2018, New Journal of Physics.

[8]  Franco Nori,et al.  A phonon laser operating at an exceptional point , 2018, Nature Photonics.

[9]  D. Christodoulides,et al.  Fluctuations and noise-limited sensing near the exceptional point of parity-time-symmetric resonator systems , 2018, Optica.

[10]  Liang Jiang,et al.  Quantum Noise Theory of Exceptional Point Amplifying Sensors. , 2018, Physical review letters.

[11]  A. Clerk,et al.  Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing , 2018, Nature Communications.

[12]  S. Djurovic,et al.  Deep 2-photon imaging and artifact-free optogenetics through transparent graphene microelectrode arrays , 2018, Nature Communications.

[13]  Andrea Alù,et al.  Generalized parity–time symmetry condition for enhanced sensor telemetry , 2018, Nature Electronics.

[14]  Hei Ming Lai,et al.  Next generation histology methods for three-dimensional imaging of fresh and archival human brain tissues , 2018, Nature Communications.

[15]  W. Langbein No exceptional precision of exceptional-point sensors , 2018, Physical Review A.

[16]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[17]  Li Ge,et al.  Non-Hermitian photonics based on parity–time symmetry , 2017 .

[18]  R. El-Ganainy,et al.  Non-Hermitian photonics based on parity–time symmetry , 2017, Nature Photonics.

[19]  S. Sunada Large Sagnac frequency splitting in a ring resonator operating at an exceptional point , 2017 .

[20]  Demetrios N. Christodoulides,et al.  Enhanced sensitivity at higher-order exceptional points , 2017, Nature.

[21]  Lan Yang,et al.  Exceptional points enhance sensing in an optical microcavity , 2017, Nature.

[22]  A. U. Hassan,et al.  Ultrasensitive micro-scale parity-time-symmetric ring laser gyroscope. , 2017, Optics letters.

[23]  S. L. Stebbings,et al.  Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator , 2016, Scientific Reports.

[24]  P. Rabl,et al.  Dynamically encircling an exceptional point for asymmetric mode switching , 2016, Nature.

[25]  Franco Nori,et al.  Metrology with PT-Symmetric Cavities: Enhanced Sensitivity near the PT-Phase Transition. , 2015, Physical review letters.

[26]  K. Vahala,et al.  Microresonator Brillouin gyroscope , 2015 .

[27]  Y. Wang,et al.  Single-mode laser by parity-time symmetry breaking , 2014, Science.

[28]  H. Yilmaz,et al.  Loss-induced suppression and revival of lasing , 2014, Science.

[29]  Stephen J. Benkovic,et al.  Corrigendum: RecG and UvsW catalyse robust DNA rewinding critical for stalled DNA replication fork rescue , 2014, Nature Communications.

[30]  Jan Wiersig,et al.  Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection , 2014 .

[31]  J. Wiersig,et al.  Rotating optical microcavities with broken chiral symmetry. , 2014, Physical review letters.

[32]  G. Strasser,et al.  Reversing the pump dependence of a laser at an exceptional point , 2014, Nature Communications.

[33]  C. Bender,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[34]  K. Vahala,et al.  Characterization of a high coherence, Brillouin microcavity laser on silicon. , 2012, Optics express.

[35]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[36]  Kerry J. Vahala,et al.  Chemically etched ultrahigh-Q wedge-resonator on a silicon chip , 2012, Nature Photonics.

[37]  Y. Chong,et al.  General linewidth formula for steady-state multimode lasing in arbitrary cavities. , 2012, Physical review letters.

[38]  H. Schomerus,et al.  Quantum noise and mode nonorthogonality in non-Hermitian PT-symmetric optical resonators , 2011, 1109.4932.

[39]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[40]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[41]  Songky Moon,et al.  Observation of an exceptional point in a chaotic optical microcavity. , 2009, Physical review letters.

[42]  Jan Wiersig,et al.  Asymmetric scattering and nonorthogonal mode patterns in optical microspirals , 2008, 0810.1584.

[43]  H. Schomerus Excess quantum noise due to mode nonorthogonality in dielectric microresonators , 2008, 0809.2349.

[44]  Soo-Young Lee,et al.  Divergent Petermann factor of interacting resonances in a stadium-shaped microcavity , 2008 .

[45]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[46]  K. Vahala,et al.  Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics. , 2003, Physical review letters.

[47]  M. Berry Mode degeneracies and the petermann excess-noise factor for unstable lasers , 2003 .

[48]  Cai,et al.  Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system , 2000, Physical review letters.

[49]  J. P. Woerdman,et al.  Excess Quantum Noise Due to Nonorthogonal Polarization Modes , 1997, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[50]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[51]  W.J. Riley,et al.  Draft revision of IEEE STD 1139-1988 standard definitions of physical quantities for fundamental, frequency and time metrology-random instabilities , 1997, Proceedings of International Frequency Control Symposium.

[52]  Cheng,et al.  Experimental Observation of a Large Excess Quantum Noise Factor in the Linewidth of a Laser Oscillator Having Nonorthogonal Modes. , 1996, Physical review letters.

[53]  J. P. Woerdman,et al.  Mode coupling in a He-Ne ring laser with backscattering. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[54]  Hamel,et al.  Observation of enhanced fundamental linewidth of a laser due to nonorthogonality of its longitudinal eigenmodes. , 1990, Physical review letters.

[55]  A. Siegman,et al.  Excess spontaneous emission in non-Hermitian optical systems. I. Laser amplifiers. , 1989, Physical review. A, General physics.

[56]  E. Wright,et al.  Theory of the nonlinear Sagnac effect in a fiber-optic gyroscope. , 1985, Physical review. A, General physics.

[57]  J. Cresser Quantum noise in ring-laser gyros. III. Approximate analytic results in unlocked region , 1982 .

[58]  A. Kaplan,et al.  Enhancement of the Sagnac effect due to nonlinearly induced nonreciprocity. , 1981, Optics letters.

[59]  K. Petermann Calculated spontaneous emission factor for double-heterostructure injection lasers with gain-induced waveguiding , 1979 .

[60]  R. Adler,et al.  A Study of Locking Phenomena in Oscillators , 1946, Proceedings of the IRE.

[61]  Hans Wenzel,et al.  Mechanisms of fast self pulsations in two-section DFB lasers , 1996 .