Lower bounds for non standard deterministic estimation

In this paper, non standard deterministic parameters estimation is considered, i.e. the situation where the probability density function (p.d.f.) parameterized by unknown deterministic parameters results from the marginalization of a joint p.d.f. depending on additional random variables. Unfortunately, in the general case, this marginalization is mathematically intractable, which prevents from using the known deterministic lower bounds on the mean-squared-error (MSE). However an embedding mechanism allows to transpose all the known lowers bounds into modified lower bounds fitted with non-standard deterministic estimation, encompassing the modified Cramér-Rao/Bhattacharyya bounds and hybrid lower bounds.

[1]  Fulvio Gini,et al.  A radar application of a modified Cramer-Rao bound: parameter estimation in non-Gaussian clutter , 1998, IEEE Trans. Signal Process..

[2]  Olivier Besson Bounds for a Mixture of Low-Rank Compound-Gaussian and White Gaussian Noises , 2016, IEEE Transactions on Signal Processing.

[3]  Fulvio Gini,et al.  On the application of the expectation-maximisation algorithm to the relative sensor registration problem , 2013 .

[4]  Eric Chaumette,et al.  Lower bounds on the mean square error derived from mixture of linear and non-linear transformations of the unbiasness definition , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[5]  Joseph Tabrikian,et al.  Hybrid lower bound via compression of the sampled CLR function , 2009, 2009 IEEE/SP 15th Workshop on Statistical Signal Processing.

[6]  Benoit Geller,et al.  On the Hybrid Cramér Rao Bound and Its Application to Dynamical Phase Estimation , 2008, IEEE Signal Processing Letters.

[7]  Fulvio Gini,et al.  On the use of Cramer-Rao-like bounds in the presence of random nuisance parameters , 2000, IEEE Trans. Commun..

[8]  D. G. Chapman,et al.  Minimum Variance Estimation Without Regularity Assumptions , 1951 .

[9]  Claudia Biermann,et al.  Mathematical Methods Of Statistics , 2016 .

[10]  E. Barankin Locally Best Unbiased Estimates , 1949 .

[11]  Umberto Mengali,et al.  The modified Cramer-Rao bound in vector parameter estimation , 1998, IEEE Trans. Commun..

[12]  Eric Chaumette,et al.  A New Barankin Bound Approximation for the Prediction of the Threshold Region Performance of Maximum Likelihood Estimators , 2008, IEEE Transactions on Signal Processing.

[13]  F. Glave,et al.  A new look at the Barankin lower bound , 1972, IEEE Trans. Inf. Theory.

[14]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[15]  G. Darmois,et al.  Sur les limites de la dispersion de certaines estimations , 1945 .

[16]  Peter M. Schultheiss,et al.  Array shape calibration using sources in unknown locations-Part I: Far-field sources , 1987, IEEE Trans. Acoust. Speech Signal Process..

[17]  Christ D. Richmond,et al.  Capon algorithm mean-squared error threshold SNR prediction and probability of resolution , 2005, IEEE Transactions on Signal Processing.

[18]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part I: Non-Bayesian Bounds for Unbiased Estimators , 2010, IEEE Transactions on Information Theory.

[19]  MARC MOENECLAEY,et al.  A Fundamental Lower Bound on the Performance of Practical Joint Carrier and Bit Synchronizers , 1984, IEEE Trans. Commun..

[20]  Umberto Mengali,et al.  The modified Cramer-Rao bound and its application to synchronization problems , 1994, IEEE Trans. Commun..

[21]  Edward M. Hofstetter,et al.  Barankin Bounds on Parameter Estimation , 1971, IEEE Trans. Inf. Theory.

[22]  Yoram Bresler,et al.  A compact Cramer-Rao bound expression for parametric estimation of superimposed signals , 1992, IEEE Trans. Signal Process..

[23]  Fulvio Gini,et al.  Least Squares Estimation and Cramér–Rao Type Lower Bounds for Relative Sensor Registration Process , 2011, IEEE Transactions on Signal Processing.

[24]  Arie Yeredor,et al.  The joint MAP-ML criterion and its relation to ML and to extended least-squares , 2000, IEEE Trans. Signal Process..

[25]  Bin Tang,et al.  Modified Cramer-Rao Bounds for Parameter Estimation of Hybrid Modulated Signal Combining PRBC and LFM , 2014, CSE.

[26]  Dmitriy Shutin,et al.  Cramér–Rao bounds for L-band digital aeronautical communication system type 1 based passive multiple-input multiple-output radar , 2016 .

[27]  Marc Moeneclaey,et al.  On the true and the modified Cramer-Rao bounds for the estimation of a scalar parameter in the presence of nuisance parameters , 1998, IEEE Trans. Commun..

[28]  Hagit Messer,et al.  A Barankin-type lower bound on the estimation error of a hybrid parameter vector , 1997, IEEE Trans. Inf. Theory.

[29]  Brian D. Rigling,et al.  Cramér-Rao Bounds for UMTS-Based Passive Multistatic Radar , 2014, IEEE Transactions on Signal Processing.

[30]  Philippe Forster,et al.  On lower bounds for deterministic parameter estimation , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[31]  Hagit Messer,et al.  New lower bounds on frequency estimation of a multitone random signal in noise , 1989 .

[32]  Joseph Tabrikian,et al.  Uniformly Best Biased Estimators in Non-Bayesian Parameter Estimation , 2011, IEEE Transactions on Information Theory.

[33]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[34]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[35]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[36]  P. Stoica,et al.  The stochastic CRB for array processing: a textbook derivation , 2001, IEEE Signal Processing Letters.

[37]  Irwin Guttman,et al.  Bhattacharyya Bounds without Regularity Assumptions , 1952 .

[38]  Jeffrey L. Krolik,et al.  Barankin bounds for source localization in an uncertain ocean environment , 1999, IEEE Trans. Signal Process..

[39]  Fredrik Athley,et al.  Threshold region performance of maximum likelihood direction of arrival estimators , 2005, IEEE Transactions on Signal Processing.

[40]  Marc Moeneclaey A Simple Lower Bound on the Linearized Performance of Practical Symbol Synchronizers , 1983, IEEE Trans. Commun..

[41]  Jean-Yves Tourneret,et al.  Modified cramer-rao lower bounds for TOA and symbol width estimation. An application to search and rescue signals , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[42]  R. Fisher 001: On an Absolute Criterion for Fitting Frequency Curves. , 1912 .

[43]  Eric Chaumette,et al.  Hybrid Barankin–Weiss–Weinstein Bounds , 2015, IEEE Signal Processing Letters.

[44]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .

[45]  Ehud Weinstein,et al.  A general class of lower bounds in parameter estimation , 1988, IEEE Trans. Inf. Theory.

[46]  Jian Li,et al.  Maximum likelihood angle estimation for signals with known waveforms , 1993, IEEE Trans. Signal Process..

[47]  Hagit Messer,et al.  Notes on the Tightness of the Hybrid CramÉr–Rao Lower Bound , 2009, IEEE Transactions on Signal Processing.

[48]  Eric Chaumette,et al.  New Results on Deterministic Cramér–Rao Bounds for Real and Complex Parameters , 2012, IEEE Transactions on Signal Processing.

[49]  R. W. Miller,et al.  A modified Cramér-Rao bound and its applications (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[50]  M. Fréchet Sur l'extension de certaines evaluations statistiques au cas de petits echantillons , 1943 .

[51]  C. Blyth,et al.  Necessary and Sufficient Conditions for Inequalities of Cramer-Rao Type , 1974 .

[52]  Björn E. Ottersten,et al.  Sensor array processing based on subspace fitting , 1991, IEEE Trans. Signal Process..

[53]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[54]  J. Hammersley On Estimating Restricted Parameters , 1950 .

[55]  Lawrence P. Seidman,et al.  A useful form of the Barankin lower bound and its application to PPM threshold analysis , 1969, IEEE Trans. Inf. Theory.

[56]  Joseph Tabrikian,et al.  Bayesian Estimation in the Presence of Deterministic Nuisance Parameters—Part I: Performance Bounds , 2015, IEEE Transactions on Signal Processing.

[57]  Jean Pierre Delmas Closed-Form Expressions of the Exact Cramer-Rao Bound for Parameter Estimation of BPSK, MSK, or QPSK Waveforms , 2006, IEEE Signal Processing Letters.

[58]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[59]  Jonathan S. Abel,et al.  A bound on mean-square-estimate error , 1993, IEEE Trans. Inf. Theory.

[60]  James V. Krogmeier,et al.  Modified Bhattacharyya bounds and their application to timing estimation , 2002, 2002 IEEE Wireless Communications and Networking Conference Record. WCNC 2002 (Cat. No.02TH8609).

[61]  A. Gualtierotti H. L. Van Trees, Detection, Estimation, and Modulation Theory, , 1976 .

[62]  Josef A. Nossek,et al.  Performance analysis for pilot-based 1-bit channel estimation with unknown quantization threshold , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[63]  Joseph Tabrikian,et al.  General Classes of Performance Lower Bounds for Parameter Estimation—Part II: Bayesian Bounds , 2010, IEEE Transactions on Information Theory.

[64]  H. V. Trees,et al.  Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking , 2007 .

[65]  W. R. Blischke,et al.  On Non-Regular Estimation. I. Variance Bounds for Estimators of Location Parameters , 1969 .

[66]  J. Kiefer On Minimum Variance Estimators , 1952 .