Statistical analysis and simulation of random shocks in stochastic Burgers equation

We study the statistical properties of random shock waves in stochastic Burgers equation subject to random space–time perturbations and random initial conditions. By using the response–excitation probability density function (PDF) method and the Mori–Zwanzig (MZ) formulation of irreversible statistical mechanics, we derive exact reduced-order equations for the one-point and two-point PDFs of the solution field. In particular, we compute the statistical properties of random shock waves in the inviscid limit by using an adaptive (shock-capturing) discontinuous Galerkin method in both physical and probability spaces. We consider stochastic flows generated by high-dimensional random initial conditions and random additive forcing terms, yielding multiple interacting shock waves collapsing into clusters and settling down to a similarity state. We also address the question of how random shock waves in space and time manifest themselves in probability space. The proposed new mathematical framework can be applied to different conservation laws, potentially leading to new insights into high-dimensional stochastic dynamical systems and more efficient computational algorithms.

[1]  D Venturi,et al.  Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  J. Burgers The Nonlinear Diffusion Equation , 2013 .

[3]  Heyrim Cho,et al.  Karhunen-Loève expansion for multi-correlated stochastic processes , 2013 .

[4]  Daniele Venturi,et al.  Adaptive Discontinuous Galerkin Method for Response-Excitation PDF Equations , 2013, SIAM J. Sci. Comput..

[5]  Daniel M. Tartakovsky,et al.  Exact PDF equations and closure approximations for advective-reactive transport , 2013, J. Comput. Phys..

[6]  Arnulf Jentzen,et al.  Galerkin Approximations for the Stochastic Burgers Equation , 2013, SIAM J. Numer. Anal..

[7]  G. Iaccarino,et al.  Non-intrusive low-rank separated approximation of high-dimensional stochastic models , 2012, 1210.1532.

[8]  Josselin Garnier,et al.  Anomalous Shock Displacement Probabilities for a Perturbed Scalar Conservation Law , 2012, Multiscale Model. Simul..

[9]  M. Wilczek,et al.  Two-point vorticity statistics in the inverse cascade of two-dimensional turbulence , 2012 .

[10]  M. Wilczek,et al.  The Lundgren–Monin–Novikov hierarchy: Kinetic equations for turbulence , 2012, 1209.6454.

[11]  Daniele Venturi,et al.  Elsevier Editorial System(tm) for Journal of Computational Physics Manuscript Draft Title: New Evolution Equations for the Joint Response-excitation Probability Density Function of Stochastic Solutions to First-order Nonlinear Pdes New Evolution Equations for the Joint Response-excitation Probabilit , 2022 .

[12]  Daniele Venturi,et al.  Supercritical quasi-conduction states in stochastic Rayleigh–Bénard convection , 2012 .

[13]  R. Srinivasan An invariant in shock clustering and Burgers turbulence , 2011, 1106.2879.

[14]  Awad H. Al-Mohy,et al.  Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..

[15]  L. Margolin,et al.  Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics , 2011 .

[16]  D. Venturi A fully symmetric nonlinear biorthogonal decomposition theory for random fields , 2011 .

[17]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[18]  Martin Hairer,et al.  Approximations to the Stochastic Burgers Equation , 2010, J. Nonlinear Sci..

[19]  Chi-Wang Shu Discontinuous Galerkin Methods , 2010 .

[20]  A. Nouy Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .

[21]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[22]  Mayya Tokman,et al.  Efficient design of exponential-Krylov integrators for large scale computing , 2010, ICCS.

[23]  George E. Karniadakis,et al.  Multi-element probabilistic collocation method in high dimensions , 2010, J. Comput. Phys..

[24]  Govind Menon,et al.  Kinetic Theory and Lax Equations for Shock Clustering and Burgers Turbulence , 2009, 0909.4036.

[25]  Pierre F. J. Lermusiaux,et al.  Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .

[26]  P. Valageas Some Statistical Properties of the Burgers Equation with White-Noise Initial Velocity , 2009, 0903.0956.

[27]  P. Valageas Statistical Properties of the Burgers Equation with Brownian Initial Velocity , 2008, 0810.4332.

[28]  Daniele Venturi,et al.  Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder , 2008, Journal of Fluid Mechanics.

[29]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[30]  J. Zabczyk,et al.  Stochastic Equations in Infinite Dimensions , 2008 .

[31]  G. Karniadakis,et al.  Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..

[32]  R. Friedrich,et al.  A note on the forced Burgers equation , 2005, nlin/0509006.

[33]  André I. Khuri,et al.  Applications of Dirac's delta function in statistics , 2004 .

[34]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[35]  George E. Karniadakis,et al.  Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..

[36]  Herschel Rabitz,et al.  Global uncertainty assessments by high dimensional model representations (HDMR) , 2002 .

[37]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[38]  Francesco Petruccione,et al.  The Time-Convolutionless Projection Operator Technique in the Quantum Theory of Dissipation and Decoherence , 2001 .

[39]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[40]  E Weinan,et al.  Invariant measures for Burgers equation with stochastic forcing , 2000, math/0005306.

[41]  L. Frachebourg,et al.  Exact statistical properties of the Burgers equation , 1999, Journal of Fluid Mechanics.

[42]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[43]  E. Weinan,et al.  Statistical theory for the stochastic Burgers equation in the inviscid limit , 1999, chao-dyn/9904028.

[44]  E. Aurell,et al.  On the decay of Burgers turbulence , 1997, Journal of Fluid Mechanics.

[45]  Polyakov Turbulence without pressure. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[46]  E Weinan,et al.  Statistical properties of shocks in Burgers turbulence , 1995 .

[47]  M. Avellaneda Statistical properties of shocks in Burgers turbulence, II: Tail probabilities for velocities, shock-strengths and rarefaction intervals , 1995 .

[48]  N. Cancrini,et al.  The stochastic Burgers Equation , 1994 .

[49]  S. Pope Lagrangian PDF Methods for Turbulent Flows , 1994 .

[50]  W. S. Edwards,et al.  Krylov methods for the incompressible Navier-Stokes equations , 1994 .

[51]  R. Kraichnan,et al.  Statistics of decaying Burgers turbulence , 1993 .

[52]  Y. Sinai,et al.  Statistics of shocks in solutions of inviscid Burgers equation , 1992 .

[53]  E. Aurell,et al.  The inviscid Burgers equation with initial data of Brownian type , 1992 .

[54]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[55]  Riccardo Mannella,et al.  The projection approach to the Fokker-Planck equation. I. Colored Gaussian noise , 1988 .

[56]  V. Palleschi,et al.  The projection operator approach to the Fokker-Planck equation. II. Dichotomic and nonlinear Gaussian noise , 1988 .

[57]  D. Sherrington Stochastic Processes in Physics and Chemistry , 1983 .

[58]  H. Tokunaga A Numerical Study of the Burgers Turbulence at Extremely Large Reynolds Numbers , 1983 .

[59]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[60]  F. Shibata,et al.  Time-convolutionless projection operator formalism for elimination of fast variables. Applications to Brownian motion , 1979 .

[61]  S. Kida Asymptotic properties of Burgers turbulence , 1979, Journal of Fluid Mechanics.

[62]  N. G. Van Kampen,et al.  A cumulant expansion for stochastic linear differential equations. I , 1974 .

[63]  I. Hosokawa,et al.  Numerical Study of the Burgers' Model of Turbulence Based on the Characteristic Functional Formalism , 1970 .

[64]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[65]  Tosio Kato Perturbation theory for linear operators , 1966 .

[66]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[67]  Robert Zwanzig,et al.  Memory Effects in Irreversible Thermodynamics , 1961 .

[68]  J. Cole On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .

[69]  E. Hopf The partial differential equation ut + uux = μxx , 1950 .

[70]  E. Hopf,et al.  The Partial Differential Equation u_i + uu_x = μu_t , 1950 .