Statistical analysis and simulation of random shocks in stochastic Burgers equation
暂无分享,去创建一个
[1] D Venturi,et al. Convolutionless Nakajima–Zwanzig equations for stochastic analysis in nonlinear dynamical systems , 2014, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[2] J. Burgers. The Nonlinear Diffusion Equation , 2013 .
[3] Heyrim Cho,et al. Karhunen-Loève expansion for multi-correlated stochastic processes , 2013 .
[4] Daniele Venturi,et al. Adaptive Discontinuous Galerkin Method for Response-Excitation PDF Equations , 2013, SIAM J. Sci. Comput..
[5] Daniel M. Tartakovsky,et al. Exact PDF equations and closure approximations for advective-reactive transport , 2013, J. Comput. Phys..
[6] Arnulf Jentzen,et al. Galerkin Approximations for the Stochastic Burgers Equation , 2013, SIAM J. Numer. Anal..
[7] G. Iaccarino,et al. Non-intrusive low-rank separated approximation of high-dimensional stochastic models , 2012, 1210.1532.
[8] Josselin Garnier,et al. Anomalous Shock Displacement Probabilities for a Perturbed Scalar Conservation Law , 2012, Multiscale Model. Simul..
[9] M. Wilczek,et al. Two-point vorticity statistics in the inverse cascade of two-dimensional turbulence , 2012 .
[10] M. Wilczek,et al. The Lundgren–Monin–Novikov hierarchy: Kinetic equations for turbulence , 2012, 1209.6454.
[11] Daniele Venturi,et al. Elsevier Editorial System(tm) for Journal of Computational Physics Manuscript Draft Title: New Evolution Equations for the Joint Response-excitation Probability Density Function of Stochastic Solutions to First-order Nonlinear Pdes New Evolution Equations for the Joint Response-excitation Probabilit , 2022 .
[12] Daniele Venturi,et al. Supercritical quasi-conduction states in stochastic Rayleigh–Bénard convection , 2012 .
[13] R. Srinivasan. An invariant in shock clustering and Burgers turbulence , 2011, 1106.2879.
[14] Awad H. Al-Mohy,et al. Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..
[15] L. Margolin,et al. Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics , 2011 .
[16] D. Venturi. A fully symmetric nonlinear biorthogonal decomposition theory for random fields , 2011 .
[17] Houman Owhadi,et al. A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..
[18] Martin Hairer,et al. Approximations to the Stochastic Burgers Equation , 2010, J. Nonlinear Sci..
[19] Chi-Wang Shu. Discontinuous Galerkin Methods , 2010 .
[20] A. Nouy. Proper Generalized Decompositions and Separated Representations for the Numerical Solution of High Dimensional Stochastic Problems , 2010 .
[21] Dirk P. Kroese,et al. Kernel density estimation via diffusion , 2010, 1011.2602.
[22] Mayya Tokman,et al. Efficient design of exponential-Krylov integrators for large scale computing , 2010, ICCS.
[23] George E. Karniadakis,et al. Multi-element probabilistic collocation method in high dimensions , 2010, J. Comput. Phys..
[24] Govind Menon,et al. Kinetic Theory and Lax Equations for Shock Clustering and Burgers Turbulence , 2009, 0909.4036.
[25] Pierre F. J. Lermusiaux,et al. Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .
[26] P. Valageas. Some Statistical Properties of the Burgers Equation with White-Noise Initial Velocity , 2009, 0903.0956.
[27] P. Valageas. Statistical Properties of the Burgers Equation with Brownian Initial Velocity , 2008, 0810.4332.
[28] Daniele Venturi,et al. Stochastic low-dimensional modelling of a random laminar wake past a circular cylinder , 2008, Journal of Fluid Mechanics.
[29] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..
[30] J. Zabczyk,et al. Stochastic Equations in Infinite Dimensions , 2008 .
[31] G. Karniadakis,et al. Multi-Element Generalized Polynomial Chaos for Arbitrary Probability Measures , 2006, SIAM J. Sci. Comput..
[32] R. Friedrich,et al. A note on the forced Burgers equation , 2005, nlin/0509006.
[33] André I. Khuri,et al. Applications of Dirac's delta function in statistics , 2004 .
[34] Cleve B. Moler,et al. Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..
[35] George E. Karniadakis,et al. Spectral Polynomial Chaos Solutions of the Stochastic Advection Equation , 2002, J. Sci. Comput..
[36] Herschel Rabitz,et al. Global uncertainty assessments by high dimensional model representations (HDMR) , 2002 .
[37] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[38] Francesco Petruccione,et al. The Time-Convolutionless Projection Operator Technique in the Quantum Theory of Dissipation and Decoherence , 2001 .
[39] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[40] E Weinan,et al. Invariant measures for Burgers equation with stochastic forcing , 2000, math/0005306.
[41] L. Frachebourg,et al. Exact statistical properties of the Burgers equation , 1999, Journal of Fluid Mechanics.
[42] R. Nagel,et al. One-parameter semigroups for linear evolution equations , 1999 .
[43] E. Weinan,et al. Statistical theory for the stochastic Burgers equation in the inviscid limit , 1999, chao-dyn/9904028.
[44] E. Aurell,et al. On the decay of Burgers turbulence , 1997, Journal of Fluid Mechanics.
[45] Polyakov. Turbulence without pressure. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[46] E Weinan,et al. Statistical properties of shocks in Burgers turbulence , 1995 .
[47] M. Avellaneda. Statistical properties of shocks in Burgers turbulence, II: Tail probabilities for velocities, shock-strengths and rarefaction intervals , 1995 .
[48] N. Cancrini,et al. The stochastic Burgers Equation , 1994 .
[49] S. Pope. Lagrangian PDF Methods for Turbulent Flows , 1994 .
[50] W. S. Edwards,et al. Krylov methods for the incompressible Navier-Stokes equations , 1994 .
[51] R. Kraichnan,et al. Statistics of decaying Burgers turbulence , 1993 .
[52] Y. Sinai,et al. Statistics of shocks in solutions of inviscid Burgers equation , 1992 .
[53] E. Aurell,et al. The inviscid Burgers equation with initial data of Brownian type , 1992 .
[54] R. Ghanem,et al. Stochastic Finite Elements: A Spectral Approach , 1990 .
[55] Riccardo Mannella,et al. The projection approach to the Fokker-Planck equation. I. Colored Gaussian noise , 1988 .
[56] V. Palleschi,et al. The projection operator approach to the Fokker-Planck equation. II. Dichotomic and nonlinear Gaussian noise , 1988 .
[57] D. Sherrington. Stochastic Processes in Physics and Chemistry , 1983 .
[58] H. Tokunaga. A Numerical Study of the Burgers Turbulence at Extremely Large Reynolds Numbers , 1983 .
[59] N. Kampen,et al. Stochastic processes in physics and chemistry , 1981 .
[60] F. Shibata,et al. Time-convolutionless projection operator formalism for elimination of fast variables. Applications to Brownian motion , 1979 .
[61] S. Kida. Asymptotic properties of Burgers turbulence , 1979, Journal of Fluid Mechanics.
[62] N. G. Van Kampen,et al. A cumulant expansion for stochastic linear differential equations. I , 1974 .
[63] I. Hosokawa,et al. Numerical Study of the Burgers' Model of Turbulence Based on the Characteristic Functional Formalism , 1970 .
[64] I. Miller. Probability, Random Variables, and Stochastic Processes , 1966 .
[65] Tosio Kato. Perturbation theory for linear operators , 1966 .
[66] Athanasios Papoulis,et al. Probability, Random Variables and Stochastic Processes , 1965 .
[67] Robert Zwanzig,et al. Memory Effects in Irreversible Thermodynamics , 1961 .
[68] J. Cole. On a quasi-linear parabolic equation occurring in aerodynamics , 1951 .
[69] E. Hopf. The partial differential equation ut + uux = μxx , 1950 .
[70] E. Hopf,et al. The Partial Differential Equation u_i + uu_x = μu_t , 1950 .