Urban Areas Enhancement in Multitemporal SAR RGB Images Using Adaptive Coherence Window and Texture Information

In this paper, we present a technique for improving the representation of built-up features in model-based multitemporal synthetic aperture radar (SAR) RGB composites. The proposed technique exploits the multitemporal adaptive processing (MAP3) framework to generate an a priori information which is used to implement an adaptive selection of the coherence window size. Image texture is used to support the coherence information in case of decorrelation. The coherence information, powered by texture analysis, and combined with backscattering amplitude, provides a unique representation of built-up features. This allows for an immediate detection of urban agglomerates by human operators, and is an advantaged starting point for urban area extraction algorithms.

[1]  Mihai Datcu,et al.  Human-centered concepts for exploration and understanding of Earth observation images , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Paul T. Pearson,et al.  Using Self Organizing Maps to Analyze Demographics and Swing State Voting in the 2008 U.S. Presidential Election , 2012, ANNPR.

[3]  Andrea Monti Guarnieri,et al.  Space-Adaptive Coherence Estimation , 2006 .

[4]  S. Omatu,et al.  Polarimetric SAR data classification using competitive neural networks , 1998 .

[5]  Antonio Iodice,et al.  Urban areas enhancement in multitemporal SAR RGB images through a feedback system , 2015, 2015 Joint Urban Remote Sensing Event (JURSE).

[6]  Francesca Bovolo,et al.  Building Change Detection in Multitemporal Very High Resolution SAR Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Lorenzo Bruzzone,et al.  Automatic Detection and Reconstruction of Building Radar Footprints From Single VHR SAR Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Lorenzo Bruzzone,et al.  Kernel-based methods for hyperspectral image classification , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[9]  M. Seymour,et al.  Maximum likelihood estimation for SAR interferometry , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[10]  Serhiy Skakun,et al.  A Neural Network Approach to Flood Mapping Using Satellite Imagery , 2012, Comput. Informatics.

[11]  Takashi Matsuyama,et al.  SIGMA: A Knowledge-Based Aerial Image Understanding System , 1990 .

[12]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[13]  Lorenzo Bruzzone,et al.  A Novel SOM-SVM-Based Active Learning Technique for Remote Sensing Image Classification , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Antonio Iodice,et al.  Sentinel-1 multitemporal SAR products , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[15]  M. Netto,et al.  An unsupervised method of classifying remotely sensed images using Kohonen self‐organizing maps and agglomerative hierarchical clustering methods , 2008 .

[16]  Siamak Khorram,et al.  An Automated Artificial Neural Network System for Land Use/Land Cover Classification from Landsat TM Imagery , 2009, Remote. Sens..

[17]  Mihai Datcu,et al.  Coarse-to-Fine Approach for Urban Area Interpretation Using TerraSAR-X Data , 2010, IEEE Geoscience and Remote Sensing Letters.

[18]  Antonio Iodice,et al.  A New Framework for SAR Multitemporal Data RGB Representation: Rationale and Products , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Aly A. Farag,et al.  A unified framework for MAP estimation in remote sensing image segmentation , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[21]  A. Iodice,et al.  An end-user-oriented framework for the classification of multitemporal SAR images , 2016 .

[22]  Ridha Touzi,et al.  Statistics of the Stokes parameters and of the complex coherence parameters in one-look and multilook speckle fields , 1996, IEEE Trans. Geosci. Remote. Sens..

[23]  Makoto Nagao,et al.  A Structural Analysis of Complex Aerial Photographs , 1980, Advanced Applications in Pattern Recognition.

[24]  Luisa Verdoliva,et al.  Exploration of Multitemporal COSMO-SkyMed Data via Interactive Tree-Structured MRF Segmentation , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[25]  Gabriele Moser,et al.  Classification of Very High Resolution SAR Images of Urban Areas Using Copulas and Texture in a Hierarchical Markov Random Field Model , 2013, IEEE Geoscience and Remote Sensing Letters.

[26]  Mihai Datcu,et al.  Backscattering and Statistical Information Fusion for Urban Area Mapping Using TerraSAR-X Data , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[27]  Simon Yueh,et al.  Application of neural networks for sea ice classification in polarimetric SAR images , 1995, IEEE Trans. Geosci. Remote. Sens..

[28]  David A. Landgrebe,et al.  A process model for remote sensing data analysis , 2002, IEEE Trans. Geosci. Remote. Sens..

[29]  P. Törönen,et al.  Analysis of gene expression data using self‐organizing maps , 1999, FEBS letters.

[30]  R. Hanssen Radar Interferometry: Data Interpretation and Error Analysis , 2001 .

[31]  Rui Seara,et al.  Image segmentation by histogram thresholding using fuzzy sets , 2002, IEEE Trans. Image Process..

[32]  S. Quegan,et al.  A statistical description of polarimetric and interferometric synthetic aperture radar data , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[33]  B. Hewitson,et al.  Self-organizing maps: applications to synoptic climatology , 2002 .

[34]  Paolo Gamba,et al.  Combining SAR-Based and Multispectral-Based Extractions to Map Urban Areas at Multiple Spatial Resolutions , 2015, IEEE Geoscience and Remote Sensing Magazine.