On the commutative equivalence of semi-linear sets of Nk
暂无分享,去创建一个
[1] Benedetto Intrigila,et al. On the structure of the counting function of sparse context-free languages , 2006, Theor. Comput. Sci..
[2] Benedetto Intrigila,et al. On the commutative equivalence of bounded context-free and regular languages: The code case , 2015, Theor. Comput. Sci..
[3] M. Schützenberger,et al. Rational sets in commutative monoids , 1969 .
[4] Seymour Ginsburg,et al. The mathematical theory of context free languages , 1966 .
[5] Benedetto Intrigila,et al. On the commutative equivalence of bounded context-free and regular languages: The semi-linear case , 2015, Theor. Comput. Sci..
[6] A. D. Luca,et al. Teoria degli Automi Finiti , 2013 .
[7] S. Ginsburg,et al. Semigroups, Presburger formulas, and languages. , 1966 .
[8] Benedetto Intrigila,et al. Quasi-polynomials, linear Diophantine equations and semi-linear sets , 2012, Theor. Comput. Sci..
[9] Ronald L. Graham,et al. Concrete mathematics - a foundation for computer science , 1991 .
[10] Benedetto Intrigila,et al. The Parikh counting functions of sparse context-free languages are quasi-polynomials , 2009, Theor. Comput. Sci..
[11] Christian Choffrut,et al. Deciding whether the ordering is necessary in a Presburger formula , 2010, Discret. Math. Theor. Comput. Sci..
[12] Ryuichi Ito. Every Semilinear Set is a Finite Union of Disjoint Linear Sets , 1969, J. Comput. Syst. Sci..
[13] Petr Ambrovz,et al. Proceedings 8th International Conference Words 2011 , 2011 .
[14] Christian Choffrut,et al. Definable sets in weak Presburger arithmetic , 2007, ICTCS.
[15] Samuel Eilenberg,et al. Automata, languages, and machines. A , 1974, Pure and applied mathematics.