On the commutative equivalence of semi-linear sets of Nk

[1]  Benedetto Intrigila,et al.  On the structure of the counting function of sparse context-free languages , 2006, Theor. Comput. Sci..

[2]  Benedetto Intrigila,et al.  On the commutative equivalence of bounded context-free and regular languages: The code case , 2015, Theor. Comput. Sci..

[3]  M. Schützenberger,et al.  Rational sets in commutative monoids , 1969 .

[4]  Seymour Ginsburg,et al.  The mathematical theory of context free languages , 1966 .

[5]  Benedetto Intrigila,et al.  On the commutative equivalence of bounded context-free and regular languages: The semi-linear case , 2015, Theor. Comput. Sci..

[6]  A. D. Luca,et al.  Teoria degli Automi Finiti , 2013 .

[7]  S. Ginsburg,et al.  Semigroups, Presburger formulas, and languages. , 1966 .

[8]  Benedetto Intrigila,et al.  Quasi-polynomials, linear Diophantine equations and semi-linear sets , 2012, Theor. Comput. Sci..

[9]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[10]  Benedetto Intrigila,et al.  The Parikh counting functions of sparse context-free languages are quasi-polynomials , 2009, Theor. Comput. Sci..

[11]  Christian Choffrut,et al.  Deciding whether the ordering is necessary in a Presburger formula , 2010, Discret. Math. Theor. Comput. Sci..

[12]  Ryuichi Ito Every Semilinear Set is a Finite Union of Disjoint Linear Sets , 1969, J. Comput. Syst. Sci..

[13]  Petr Ambrovz,et al.  Proceedings 8th International Conference Words 2011 , 2011 .

[14]  Christian Choffrut,et al.  Definable sets in weak Presburger arithmetic , 2007, ICTCS.

[15]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.