THE OPTIMAL NUMBER AND LOCATION OF GROUNDED VIAS TO REDUCE CROSSTALK

Modern electronic products are increasingly based on high-speed, high-density circuitry operating at lower voltages. With such designs, the signal integrity (SI) in a poor printed circuit board layout is afiected by noise and may become unstable. Crosstalk is a major source of noise that interferes with SI. Generally, crosstalk can be reduced by adding a guard trace between the victim and aggressor areas of the circuit. In addition, grounded vias can be added to the guard trace to help reduce crosstalk. Since a large number of grounded vias degrade the SI and reduce the ∞exibility of the circuit routing, we propose a method to calculate the optimal distance between grounded vias in the guard trace and determine the smallest number of vias required to achieve optimal performance in reducing crosstalk. We show by time-domain simulation that our method reduces the near- end crosstalk by 27.65% and the far-end crosstalk by more than 31.63% compared to the three-width rule. This is backed up by experimental results that show not only reductions of 34.49% and 37.55% for the near- and far-end crosstalk over time-domain, respectively, but also reductions of 2.1dB and 3.3dB for the near- and far-end crosstalk over the frequency-domain, respectively. Our results indicate that our method of optimal grounded vias has better performance than other methods.

[1]  H. Sobol,et al.  Applications of integrated circuit technology to microwave frequencies , 1971 .

[2]  D. Cheng Field and wave electromagnetics , 1983 .

[3]  G. I. Costache,et al.  SPICE simulation used to characterize the cross-talk reduction effect of additional tracks grounded with vias on printed circuit boards , 1992 .

[4]  B. Eged,et al.  Measurement by vector-network analyzer and simulation of crosstalk reduction on printed circuit boards with additional center traces , 1993, 1993 IEEE Instrumentation and Measurement Technology Conference.

[5]  B. Eged,et al.  Measurement and simulation of crosstalk reduction by discrete discontinuities along coupled PCB traces , 1994 .

[6]  Mark I. Montrose,et al.  EMC and the printed circuit board : design, theory, and layout made simple , 1999 .

[7]  Brian Young Digital Signal Integrity: Modeling and Simulation with Interconnects and Packages , 2000 .

[8]  Stephen H. Hall,et al.  High-Speed Digital System Design: A Handbook of Interconnect Theory and Design Practices , 2000 .

[9]  Eric Bogatin Signal Integrity - Simplified , 2003 .

[10]  M.S. Sharawi Practical issues in high speed PCB design , 2004, IEEE Potentials.

[11]  R. Abhari,et al.  Using via fences for crosstalk reduction in PCB circuits , 2006, 2006 IEEE International Symposium on Electromagnetic Compatibility, 2006. EMC 2006..

[12]  H. Kroger,et al.  Behavior of Short Pulses on Tightly Coupled Microstrip Lines and Reduction of Crosstalk by Using Overlying Dielectric , 2007, IEEE Transactions on Advanced Packaging.

[13]  W.P. Siebert,et al.  On The Problem of Using Guard Traces for High Frequency Differential Lines Crosstalk Reduction , 2007, IEEE Transactions on Components and Packaging Technologies.

[14]  Jae-Yoon Sim,et al.  A Serpentine Guard Trace to Reduce the Far-End Crosstalk Voltage and the Crosstalk Induced Timing Jitter of Parallel Microstrip Lines , 2008, IEEE Transactions on Advanced Packaging.

[15]  Cecilia Metra,et al.  Risks for Signal Integrity in System in Package and Possible Remedies , 2008, 2008 13th European Test Symposium.

[16]  Wei-Da Guo,et al.  Fewest vias design for microstrip guard trace by using overlying dielectric , 2008, 2008 IEEE-EPEP Electrical Performance of Electronic Packaging.