THE WADGE ORDER ON THE SCOTT DOMAIN IS NOT A WELL-QUASI-ORDER

We prove that the Wadge order on the Borel subsets of the Scott domain is not a well-quasi-order, and that this feature even occurs among the sets of Borel rank at most 2. For this purpose, a specific class of countable 2-colored posets $\mathbb{P}_{lay}$ equipped with the order induced by homomorphisms is embedded into the Wadge order on the $\boldsymbol{\Delta}^0_2$-degrees of the Scott domain. We then show that $\mathbb{P}_{lay}$ both admits infinite strictly decreasing chains and infinite antichains with respect to this notion of comparison, which therefore transfers to the Wadge order on the $\boldsymbol{\Delta}^0_2$-degrees of the Scott domain.

[1]  Philipp Schlicht,et al.  Continuous reducibility and dimension of metric spaces , 2017, Arch. Math. Log..

[2]  Victor L. Selivanov,et al.  Towards a descriptive theory of cb0-spaces , 2014, Mathematical Structures in Computer Science.

[3]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[4]  Verónica Becher,et al.  Wadge hardness in Scott spaces and its effectivization , 2015, Math. Struct. Comput. Sci..

[5]  Victor L. Selivanov,et al.  Towards a descriptive set theory for domain-like structures , 2006, Theor. Comput. Sci..

[6]  Philipp Schlicht,et al.  Wadge-like reducibilities on arbitrary quasi-Polish spaces , 2012, Mathematical Structures in Computer Science.

[7]  Alessandro Andretta The SLO Principle and the Wadge hierarchy , 2007 .

[8]  A. Louveau,et al.  Some results in the wadge hierarchy of borel sets , 1983 .

[9]  Philipp Schlicht,et al.  Borel subsets of the real line and continuous reducibility , 2019, Fundamenta Mathematicae.

[10]  Jacques Duparc,et al.  Wadge hierarchy and Veblen hierarchy Part I: Borel sets of finite rank , 2001, Journal of Symbolic Logic.

[11]  Erkko Lehtonen Labeled posets are universal , 2008, Eur. J. Comb..

[12]  Yann Pequignot,et al.  A Wadge hierarchy for second countable spaces , 2015, Arch. Math. Log..

[13]  Takayuki Kihara,et al.  On the structure of the Wadge degrees of bqo-valued Borel functions , 2019, Transactions of the American Mathematical Society.

[14]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[15]  J. Goubault-Larrecq Non-Hausdorff Topology and Domain Theory: Stably compact spaces and compact pospaces , 2013 .

[16]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[17]  K. Hofmann,et al.  Continuous Lattices and Domains , 2003 .

[18]  William W. Wadge,et al.  Reducibility and Determinateness on the Baire Space , 1982 .

[19]  Matthew de Brecht Quasi-Polish spaces , 2011, Ann. Pure Appl. Log..

[20]  Victor L. Selivanov Extending Wadge Theory to k-Partitions , 2017, CiE.

[21]  Daisuke Ikegami Games in set theory and logic , 2010 .

[22]  Victor L. Selivanov,et al.  Hierarchies in φ‐spaces and applications , 2005, Math. Log. Q..

[23]  Alain Louveau,et al.  The strength of Borel wadge determinacy , 1988 .