Bacterial cell division.

Bacteria usually divide by building a central septum across the middle of the cell. This review focuses on recent results indicating that the tubulin-like FtsZ protein plays a central role in cytokinesis as a major component of a contractile cytoskeleton. Assembly of this cytoskeletal element abutting the membrane is a key point for regulation. The characterization of FtsZ homologues in Mycoplasmas, Archaea, and chloroplasts implies that the constriction mechanism is conserved and that FtsZ can constrict in the absence of peptidoglycan synthesis. In most Eubacteria, the internal cytoskeleton must also regulate synthesis of septal peptidoglycan. The Escherichia coli septum-specific penicillin-binding protein 3 (PBP3) forms a complex with other enzymes involved in murein metabolism, suggesting a centrally located transmembrane complex capable of splicing multiple new strands of peptidoglycan into the cell wall. Important questions remain about the spatial and temporal control of bacterial division.

[1]  X. Wang,et al.  Characterization of the ftsZ gene from Mycoplasma pulmonis, an organism lacking a cell wall , 1996, Journal of bacteriology.

[2]  C. Woldringh,et al.  Toporegulation of bacterial division according to the nucleoid occlusion model. , 1991, Research in microbiology.

[3]  F. Portillo,et al.  Differential effect of mutational impairment of penicillin-binding proteins 1A and 1B on Escherichia coli strains harboring thermosensitive mutations in the cell division genes ftsA, ftsQ, ftsZ, and pbpB. , 1990 .

[4]  P. D. de Boer,et al.  Central role for the Escherichia coli minC gene product in two different cell division-inhibition systems. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[5]  P. Taschner,et al.  An amino acid substitution in penicillin-binding protein 3 creates pointed polar caps in Escherichia coli , 1988, Journal of bacteriology.

[6]  T. Dougherty,et al.  Identification and characterization of cell wall-cell division gene clusters in pathogenic gram-positive cocci , 1997, Journal of bacteriology.

[7]  B. Spratt,et al.  Defective and plaque-forming lambda transducing bacteriophage carrying penicillin-binding protein-cell shape genes: genetic and physical mapping and identification of gene products from the lip-dacA-rodA-pbpA-leuS region of the Escherichia coli chromosome , 1980, Journal of bacteriology.

[8]  M. Kirschner,et al.  Beyond self-assembly: From microtubules to morphogenesis , 1986, Cell.

[9]  J.T. Park,et al.  Why does Escherichia coli recycle its cell wall peptides? , 1995, Molecular microbiology.

[10]  W. Donachie,et al.  Inhibition of cell division initiation by an imbalance in the ratio of FtsA to FtsZ , 1992, Journal of bacteriology.

[11]  H. Hara,et al.  A promoter for the first nine genes of the Escherichia coli mra cluster of cell division and cell envelope biosynthesis genes, including ftsI and ftsW , 1997, Journal of bacteriology.

[12]  H. Erickson,et al.  FtsZ, a prokaryotic homolog of tubulin? , 1995, Cell.

[13]  W. Margolin,et al.  Interactions between heterologous FtsA and FtsZ proteins at the FtsZ ring , 1997, Journal of bacteriology.

[14]  J. Strominger,et al.  Nucleotide sequence of the pbpA gene and characteristics of the deduced amino acid sequence of penicillin-binding protein 2 of Escherichia coli K12. , 1986, European journal of biochemistry.

[15]  J. Corbo,et al.  Cloning and characterization of a Rhizobium meliloti homolog of the Escherichia coli cell division gene ftsZ , 1991, Journal of bacteriology.

[16]  P A de Boer,et al.  Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Y. Hotta,et al.  Cell Division , 2021, Nature.

[18]  H. Erickson,et al.  Bacterial cell division protein FtsZ assembles into protofilament sheets and minirings, structural homologs of tubulin polymers. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Lutkenhaus,et al.  FtsZ ring: the eubacterial division apparatus conserved in archaebacteria , 1996, Molecular microbiology.

[20]  W. Donachie,et al.  Cell shape and chromosome partition in prokaryotes or, why E. coli is rod-shaped and haploid. , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[21]  J. Heijenoort,et al.  Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3 , 1992, Journal of bacteriology.

[22]  P. Baumann,et al.  An archaebacterial homologue of the essential eubacterial cell division protein FtsZ. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Raychaudhuri,et al.  A point mutation converts Escherichia coli FtsZ septation GTPase to an ATPase. , 1994, The Journal of biological chemistry.

[24]  J. Errington,et al.  Structure, function and controls in microbial division , 1996, Molecular microbiology.

[25]  A. L. Koch The surface stress theory for the case of Escherichia coli: the paradoxes of gram-negative growth. , 1990, Research in microbiology.

[26]  R. Losick,et al.  Transcription factor Spo0A switches the localization of the cell division protein FtsZ from a medial to a bipolar pattern in Bacillus subtilis. , 1996, Genes & development.

[27]  J. Lutkenhaus,et al.  Two polypeptide products of the Escherichia coli cell division gene ftsW and a possible role for FtsW in FtsZ function , 1997, Journal of bacteriology.

[28]  J. Lutkenhaus,et al.  Overproduction of FtsZ induces minicell formation in E. coli , 1985, Cell.

[29]  M Aldea,et al.  Transcription of ftsZ oscillates during the cell cycle of Escherichia coli. , 1993, The EMBO journal.

[30]  E. Salmon,et al.  Membrane/microtubule tip attachment complexes (TACs) allow the assembly dynamics of plus ends to push and pull membranes into tubulovesicular networks in interphase Xenopus egg extracts , 1995, The Journal of cell biology.

[31]  L. Rothfield,et al.  The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. , 1991, The EMBO journal.

[32]  B. Spratt Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[33]  B. Spratt,et al.  Penicillin-binding proteins of gram-negative bacteria. , 1988, Reviews of infectious diseases.

[34]  J. Errington,et al.  The Bacillus subtilis soj‐spo0J locus is required for a centromere‐like function involved in prespore chromosome partitioning , 1996, Molecular microbiology.

[35]  L. Shapiro,et al.  The control of temporal and spatial organization during the Caulobacter cell cycle. , 1996, Current opinion in genetics & development.

[36]  J. Errington,et al.  Postseptational chromosome partitioning in bacteria. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Ghuysen,et al.  Nucleotide sequences of the pbpX genes encoding the penicillin‐binding proteins 2x from Streptococcus pneumoniae R6 and a cefotaxime‐resistant mutant, C506 , 1989, Molecular microbiology.

[38]  Francis Hermann,et al.  Cloning and controlled overexpression of the gene encoding the 35 kDa soluble lytic transglycosylase from Escherichia coli , 1995, FEBS letters.

[39]  D. Raskin,et al.  The MinE Ring: An FtsZ-Independent Cell Structure Required for Selection of the Correct Division Site in E. coli , 1997, Cell.

[40]  A. Tomasz,et al.  Gradual Alterations in Cell Wall Structure and Metabolism in Vancomycin-Resistant Mutants ofStaphylococcus aureus , 1999, Journal of bacteriology.

[41]  J. Lutkenhaus,et al.  Interaction between FtsZ and inhibitors of cell division , 1996, Journal of bacteriology.

[42]  Y. Brun,et al.  Cell cycle regulation and cell type-specific localization of the FtsZ division initiation protein in Caulobacter. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  L. Rothfield,et al.  A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli , 1989, Cell.

[44]  T. Vernet,et al.  Glycosyltransferase Domain of Penicillin-Binding Protein 2a from Streptococcus pneumoniae Is Membrane Associated , 1999, Journal of bacteriology.

[45]  R. Gayda,et al.  High-level expression of the FtsA protein inhibits cell septation in Escherichia coli K-12 , 1990, Journal of bacteriology.

[46]  C. Thompson,et al.  GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Lutkenhaus,et al.  Mutations in ftsZ that confer resistance to SulA affect the interaction of FtsZ with GTP , 1994, Journal of bacteriology.

[48]  H. Hilbert,et al.  Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. , 1996, Nucleic acids research.

[49]  D. H. Edwards,et al.  A murein hydrolase is the specific target of bulgecin in Escherichia coli. , 1992, The Journal of biological chemistry.

[50]  P. Taschner,et al.  Division behavior and shape changes in isogenic ftsZ, ftsQ, ftsA, pbpB, and ftsE cell division mutants of Escherichia coli during temperature shift experiments , 1988, Journal of bacteriology.

[51]  W. Donachie,et al.  Roles of FtsA and FtsZ in Activation of Division Sites , 1998, Journal of bacteriology.

[52]  H. Erickson,et al.  Protofilaments and rings, two conformations of the tubulin family conserved from bacterial FtsZ to alpha/beta and gamma tubulin , 1996, The Journal of cell biology.

[53]  T. Romeis,et al.  Penicillin-binding protein 7/8 of Escherichia coli is a DD-endopeptidase. , 1994, European journal of biochemistry.

[54]  J. Lutkenhaus,et al.  FtsA is localized to the septum in an FtsZ-dependent manner , 1996, Journal of bacteriology.

[55]  J. Höltje,et al.  Affinity chromatography as a means to study multienzyme complexes involved in murein synthesis. , 1996, Microbial drug resistance.

[56]  J. Lutkenhaus,et al.  Organization of genes in the ftsA-envA region of the Escherichia coli genetic map and identification of a new fts locus (ftsZ) , 1980, Journal of bacteriology.

[57]  F. Jacob,et al.  Thermosensitive mutants of E. coli affected in the processes of DNA synthesis and cellular division. , 1968, Cold Spring Harbor symposia on quantitative biology.

[58]  N. Nanninga,et al.  Interaction of monoclonal antibodies with the enzymatic domains of penicillin-binding protein 1b of Escherichia coli , 1990, Journal of bacteriology.

[59]  R. Hengge-aronis,et al.  Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S , 1991, Journal of bacteriology.

[60]  M. Sugai,et al.  An autolysin ring associated with cell separation of Staphylococcus aureus , 1996, Journal of bacteriology.

[61]  J. Errington,et al.  A fixed distance for separation of newly replicated copies of oriC in Bacillus subtilis: implications for co‐ordination of chromosome segregation and cell division , 1998, Molecular microbiology.

[62]  J. Lutkenhaus,et al.  Cloning and characterization of Bacillus subtilis homologs of Escherichia coli cell division genes ftsZ and ftsA , 1988, Journal of bacteriology.

[63]  M. Aldea,et al.  Preferential cytoplasmic location of FtsZ, a protein essential for Escherichia coli septation , 1991, Molecular Microbiology.

[64]  L. Rothfield,et al.  How Do Bacteria Decide Where to Divide? , 1996, Cell.

[65]  B. Spratt,et al.  The nucleotide sequences of the ponA and ponB genes encoding penicillin-binding protein 1A and 1B of Escherichia coli K12. , 1985, European journal of biochemistry.

[66]  K. H. Kalk,et al.  Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography , 1994, Nature.

[67]  R. Lurz,et al.  Mutational Analysis of the Streptococcus pneumoniae Bimodular Class A Penicillin-Binding Proteins , 1999, Journal of bacteriology.

[68]  E. Bi,et al.  Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring , 1993, Journal of bacteriology.

[69]  L. Rothfield,et al.  Bacterial cell division. , 1999, Annual Review of Genetics.

[70]  W. Donachie,et al.  Identification of FtsW and characterization of a new ftsW division mutant of Escherichia coli , 1994, Journal of bacteriology.

[71]  Haruo Watanabe,et al.  Penicillin-Binding Protein 1 ofStaphylococcus aureus Is Essential for Growth , 1998, Journal of bacteriology.

[72]  B. Spratt,et al.  Identification of the rodA gene product of Escherichia coli , 1983, Journal of bacteriology.

[73]  J. Lutkenhaus Coupling of DNA replication and cell division: sulB is an allele of ftsZ , 1983, Journal of bacteriology.

[74]  R. D'ari,et al.  An inducible DNA replication–cell division coupling mechanism in E. coli , 1981, Nature.

[75]  J. Lutkenhaus,et al.  Topological characterization of the essential Escherichia coli cell division protein FtsN , 1996, Journal of bacteriology.

[76]  G. Hatfull,et al.  Identification of new genes in a cell envelope-cell division gene cluster of Escherichia coli: cell division gene ftsQ , 1980, Journal of bacteriology.

[77]  T. Ogura,et al.  Cloning, sequencing, and characterization of multicopy suppressors of a mukB mutation in Escherichia coli , 1994, Molecular microbiology.

[78]  J. T. Park Turnover and recycling of the murein sacculus in oligopeptide permease-negative strains of Escherichia coli: indirect evidence for an alternative permease system and for a monolayered sacculus , 1993, Journal of bacteriology.

[79]  T. Ogura,et al.  The new gene mukB codes for a 177 kd protein with coiled‐coil domains involved in chromosome partitioning of E. coli. , 1991, The EMBO journal.

[80]  A. Friry,et al.  Analysis of genes encoding the cell division protein FtsZ and a glutathione synthetase homologue in the cyanobacterium Anabaena sp. PCC 7120. , 1995, Research in microbiology.

[81]  D. Ehrhardt,et al.  Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[82]  K. Young,et al.  Escherichia coli Mutants Lacking All Possible Combinations of Eight Penicillin Binding Proteins: Viability, Characteristics, and Implications for Peptidoglycan Synthesis , 1999, Journal of bacteriology.

[83]  A. Grossman,et al.  Effect of minCD on FtsZ Ring Position and Polar Septation in Bacillus subtilis , 1998, Journal of bacteriology.

[84]  C. Woldringh,et al.  Plasmolysis bays in Escherichia coli: are they related to development and positioning of division sites? , 1993, Journal of bacteriology.

[85]  C. Town,et al.  Expression and characterization of the ponA (ORF I) gene of Haemophilus influenzae: functional complementation in a heterologous system , 1995, Journal of bacteriology.

[86]  J. Lutkenhaus,et al.  FtsI and FtsW Are Localized to the Septum inEscherichia coli , 1998, Journal of bacteriology.

[87]  B. Glauner,et al.  Growth pattern of the murein sacculus of Escherichia coli. , 1990, The Journal of biological chemistry.

[88]  J. Lutkenhaus,et al.  ftsZ is an essential cell division gene in Escherichia coli , 1991, Journal of bacteriology.

[89]  H. Matsuzawa,et al.  Cluster of mrdA and mrdB genes responsible for the rod shape and mecillinam sensitivity of Escherichia coli , 1980, Journal of bacteriology.

[90]  M. Templin,et al.  Cloning and expression of a murein hydrolase lipoprotein from Escherichia coli , 1995, Molecular microbiology.

[91]  H. Matsuzawa,et al.  Molecular cloning and characterization of the genes (pbpA and rodA) responsible for the rod shape of Escherichia coli K-12: analysis of gene expression with transposon Tn5 mutagenesis and protein synthesis directed by constructed plasmids , 1983, Journal of bacteriology.

[92]  W. Margolin,et al.  Isolation of an ftsZ homolog from the archaebacterium Halobacterium salinarium: implications for the evolution of FtsZ and tubulin , 1996, Journal of bacteriology.

[93]  C. Georgopoulos,et al.  The essential Escherichia coli msgB gene, a multicopy suppressor of a temperature-sensitive allele of the heat shock gene grpE, is identical to dapE , 1992, Journal of bacteriology.

[94]  G. Walker,et al.  DnaK mutants defective in ATPase activity are defective in negative regulation of the heat shock response: expression of mutant DnaK proteins results in filamentation , 1994, Journal of bacteriology.

[95]  J. Errington,et al.  Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. , 1994, Science.

[96]  M. Matsuhashi,et al.  Negative control of cell division by mreB, a gene that functions in determining the rod shape of Escherichia coli cells , 1989, Journal of bacteriology.

[97]  J. Lutkenhaus,et al.  Guanine nucleotide-dependent assembly of FtsZ into filaments , 1994, Journal of bacteriology.

[98]  J. Lutkenhaus,et al.  Escherichia coli cell division protein FtsZ is a guanine nucleotide binding protein. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[99]  W. Margolin,et al.  Assembly of the FtsZ ring at the central division site in the absence of the chromosome , 1998, Molecular microbiology.

[100]  D. Raychaudhuri,et al.  Escherichia coli cell-division gene ftsZ encodes a novel GTP-binding protein , 1992, Nature.

[101]  W. Keck,et al.  Penicillin‐binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition , 1991, Molecular microbiology.

[102]  J. Lutkenhaus,et al.  FtsZ‐spirals and ‐arcs determine the shape of the invaginating septa in some mutants of Escherichia coli , 1996, Molecular microbiology.

[103]  B. Spratt,et al.  Membrane topology of penicillin‐binding protein 3 of Escherichia coli , 1989, Molecular microbiology.

[104]  P. D. de Boer,et al.  Recruitment of ZipA to the Septal Ring ofEscherichia coli Is Dependent on FtsZ and Independent of FtsA , 1999, Journal of bacteriology.

[105]  B. Spratt,et al.  Peptidoglycan synthetic activities in membranes of Escherichia coli caused by overproduction of penicillin-binding protein 2 and rodA protein. , 1986, The Journal of biological chemistry.

[106]  Christopher M Thomas,et al.  A family of ATPases involved in active partitioning of diverse bacterial plasmids , 1990, Molecular microbiology.

[107]  Nanne Nanninga,et al.  Morphogenesis of Escherichia coli , 1998, Microbiology and Molecular Biology Reviews.

[108]  N. Nanninga Cell division and peptidoglycan assembly in Eschenchia coli , 1991, Molecular microbiology.

[109]  J. Corton,et al.  Analysis of cell division gene ftsZ (sulB) from gram-negative and gram-positive bacteria , 1987, Journal of bacteriology.

[110]  L. Burman,et al.  Molecular model for elongation of the murein sacculus of Escherichia coli. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[111]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[112]  E. Bi,et al.  Isolation and characterization of ftsZ alleles that affect septal morphology , 1992, Journal of bacteriology.

[113]  M. Aldea,et al.  Division genes in Escherichia coli are expressed coordinately to cell septum requirements by gearbox promoters. , 1990, The EMBO journal.

[114]  A. Weiss,et al.  Conservation of the 168 divIB gene in Bacillus subtilis W23 and B. licheniformis, and evidence for homology to ftsQ of Escherichia coli. , 1994, Gene.

[115]  T. Ogura,et al.  Escherichia coli mutant Y16 is a double mutant carrying thermosensitive ftsH and ftsI mutations , 1992, Journal of bacteriology.

[116]  J. Höltje Molecular interplay of murein synthases and murein hydrolases in Escherichia coli. , 1996, Microbial drug resistance.

[117]  J. Lutkenhaus,et al.  Bacterial cell division and the Z ring. , 1997, Annual review of biochemistry.

[118]  J. Lutkenhaus,et al.  Cloning and characterization of ftsN, an essential cell division gene in Escherichia coli isolated as a multicopy suppressor of ftsA12(Ts) , 1993, Journal of bacteriology.

[119]  M. Syvanen,et al.  DNA twist as a transcriptional sensor for environmental changes , 1992, Molecular microbiology.

[120]  C. Sander,et al.  Correlation between the structure and biochemical activities of FtsA, an essential cell division protein of the actin family. , 1994, The EMBO journal.

[121]  G. Venema,et al.  Molecular cloning and nucleotide sequence of the gene encoding the major peptidoglycan hydrolase of Lactococcus lactis, a muramidase needed for cell separation , 1995, Journal of bacteriology.

[122]  M. Ikeda,et al.  New mutations fts-36, lts-33, and ftsW clustered in the mra region of the Escherichia coli chromosome induce thermosensitive cell growth and division , 1989, Journal of bacteriology.

[123]  R. D'ari,et al.  Thermoinducible filamentation in Escherichia coli due to an altered RNA polymerase beta subunit is suppressed by high levels of ppGpp , 1994, Journal of bacteriology.

[124]  J. Errington,et al.  Bacillus subtilis Cell Cycle as Studied by Fluorescence Microscopy: Constancy of Cell Length at Initiation of DNA Replication and Evidence for Active Nucleoid Partitioning , 1998, Journal of bacteriology.

[125]  K. Young,et al.  Identification and cloning of the gene encoding penicillin-binding protein 7 of Escherichia coli , 1995, Journal of bacteriology.

[126]  J. Ghuysen,et al.  Molecular structures of penicillin-binding proteins and β-lactamases , 1994 .

[127]  T. Romeis,et al.  Murein chemistry of cell division in Escherichia coli. , 1991, Research in microbiology.

[128]  C. Touriol,et al.  Deletion analysis of gene minE which encodes the topological specificity factor of cell division in Escherichia coli , 1995, Molecular microbiology.

[129]  T. Dougherty,et al.  Direct quantitation of the number of individual penicillin-binding proteins per cell in Escherichia coli , 1996, Journal of bacteriology.

[130]  F. Ishino,et al.  Peptidoglycan synthetic enzyme activities of highly purified penicillin-binding protein 3 in Escherichia coli: a septum-forming reaction sequence. , 1981, Biochemical and biophysical research communications.

[131]  A. Grossman,et al.  spo0J is required for normal chromosome segregation as well as the initiation of sporulation in Bacillus subtilis , 1994, Journal of bacteriology.

[132]  R. Losick,et al.  Growth and viability of Streptomyces coelicolor mutant for the cell division gene ftsZ , 1994, Molecular microbiology.

[133]  T. Ogura,et al.  RNase E polypeptides lacking a carboxyl-terminal half suppress a mukB mutation in Escherichia coli , 1996, Journal of bacteriology.

[134]  J. Höltje,et al.  Purification and properties of a membrane-bound lytic transglycosylase from Escherichia coli , 1994, Journal of bacteriology.

[135]  J. Lutkenhaus,et al.  The FtsZ protein of Bacillus subtilis is localized at the division site and has GTPase activity that is dependent upon FtsZ concentration , 1993, Molecular microbiology.

[136]  W. Margolin,et al.  Localization of Cell Division Protein FtsK to theEscherichia coli Septum and Identification of a Potential N-Terminal Targeting Domain , 1998, Journal of bacteriology.

[137]  H. T. Ho,et al.  Staphylococcus haemolyticus contains two D-glutamic acid biosynthetic activities, a glutamate racemase and a D-amino acid transaminase , 1995, Journal of bacteriology.

[138]  D. Sherratt,et al.  The ripX Locus of Bacillus subtilis Encodes a Site-Specific Recombinase Involved in Proper Chromosome Partitioning , 1999, Journal of bacteriology.

[139]  R. D'ari,et al.  Overview of controls in the Escherichia coli cell cycle , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[140]  L. Gutmann,et al.  Structure of the low-affinity penicillin-binding protein 5 PBP5fm in wild-type and highly penicillin-resistant strains of Enterococcus faecium , 1996, Journal of bacteriology.

[141]  J. Beckwith,et al.  FtsL, an Essential Cytoplasmic Membrane Protein Involved in Cell Division in Escherichia coli , 1992, Journal of bacteriology.

[142]  J. McIntosh,et al.  Minus-end-directed motion of kinesin–coated microspheres driven by microtubule depolymerization , 1995, Nature.

[143]  E. Bi,et al.  FtsZ ring structure associated with division in Escherichia coli , 1991, Nature.

[144]  Boer,et al.  Roles of MinC and MinD in the site-specific septation block mediated by the MinCDE system of Escherichia coli , 1992, Journal of bacteriology.

[145]  J. Beckwith,et al.  The FtsQ protein of Escherichia coli: membrane topology, abundance, and cell division phenotypes due to overproduction and insertion mutations , 1991, Journal of bacteriology.

[146]  A. Higashitani,et al.  A cell division inhibitor SulA of Escherichia coli directly interacts with FtsZ through GTP hydrolysis. , 1995, Biochemical and biophysical research communications.

[147]  L. Rothfield,et al.  Early stages in development of the Escherichia coli cell‐division site , 1994, Molecular microbiology.

[148]  P. Setlow,et al.  Septal Localization of Penicillin-Binding Protein 1 in Bacillus subtilis , 1999, Journal of bacteriology.

[149]  W. Wickner,et al.  Trigger factor depletion or overproduction causes defective cell division but does not block protein export , 1990, Journal of bacteriology.

[150]  P. Chacón,et al.  Tubulin secondary structure analysis, limited proteolysis sites, and homology to FtsZ. , 1996, Biochemistry.

[151]  W. Vollmer,et al.  Characterization of three different lytic transglycosylases in Escherichia coli. , 1993, FEMS microbiology letters.

[152]  P J Lewis,et al.  A conjugation-like mechanism for prespore chromosome partitioning during sporulation in Bacillus subtilis. , 1995, Genes & development.

[153]  B. Spratt,et al.  The balance between different peptidoglycan precursors determines whether Escherichia coli cells will elongate or divide , 1990, Journal of bacteriology.

[154]  B. Spratt Temperature-Sensitive Cell Division Mutants of Escherichia coli with Thermolabile Penicillin-Binding Proteins , 1977, Journal of bacteriology.

[155]  H. Hara,et al.  A novel glycan polymerase that synthesizes uncross‐linked peptidoglycan in Escherichia coli , 1984, FEBS letters.

[156]  O. Dideberg,et al.  X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme , 1996, Nature Structural Biology.

[157]  F. Képès,et al.  Proposed mechanism for generation and localization of new cell division sites during the division cycle of Escherichia coli. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[158]  J. Lutkenhaus,et al.  The proper ratio of FtsZ to FtsA is required for cell division to occur in Escherichia coli , 1992, Journal of bacteriology.

[159]  K. Marians,et al.  Identification of dnaX as a High-Copy Suppressor of the Conditional Lethal and Partition Phenotypes of theparE10 Allele , 1998, Journal of bacteriology.

[160]  W. Margolin,et al.  Rhizobium meliloti contains a novel second homolog of the cell division gene ftsZ , 1994, Journal of bacteriology.

[161]  J. Höltje,et al.  Growth of the Stress-Bearing and Shape-Maintaining Murein Sacculus of Escherichia coli , 1998, Microbiology and Molecular Biology Reviews.

[162]  W. Donachie,et al.  The cell cycle of Escherichia coli. , 1993, Annual review of microbiology.

[163]  T. Ogura,et al.  Identification and characterization of the smbA gene, a suppressor of the mukB null mutant of Escherichia coli , 1992, Journal of bacteriology.

[164]  J. Höltje “Three for one” — a Simple Growth Mechanism that Guarantees a Precise Copy of the Thin, Rod-Shaped Murein Sacculus of Escherichia coli , 1993 .

[165]  N. Nanninga,et al.  Timing of FtsZ Assembly in Escherichia coli , 1999, Journal of bacteriology.

[166]  S. Tamaki,et al.  Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. , 1984, The Journal of biological chemistry.

[167]  H. Jung,et al.  Escherichia coli mraR gene involved in cell growth and division , 1992, Journal of bacteriology.

[168]  W. Donachie,et al.  A new Escherichia coli cell division gene, ftsK , 1995, Journal of bacteriology.

[169]  T. Ogura,et al.  E.coli MukB protein involved in chromosome partition forms a homodimer with a rod‐and‐hinge structure having DNA binding and ATP/GTP binding activities. , 1992, The EMBO journal.

[170]  N. Nanninga,et al.  Rate and topography of peptidoglycan synthesis during cell division in Escherichia coli: concept of a leading edge , 1989, Journal of bacteriology.

[171]  F. Schmid,et al.  A ribosome‐associated peptidyl‐prolyl cis/trans isomerase identified as the trigger factor. , 1995, The EMBO journal.

[172]  V. Katis,et al.  Membrane-Bound Division Proteins DivIB and DivIC ofBacillus subtilis Function Solely through Their External Domains in both Vegetative and Sporulation Division , 1999, Journal of bacteriology.

[173]  T. Romeis,et al.  Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. , 1994, The Journal of biological chemistry.

[174]  M. Inouye,et al.  Synthetic ColE1 plasmids carrying genes for cell division in Escherichia coli. , 1977, Plasmid.

[175]  G. Botta,et al.  Murein synthesis and beta-lactam antibiotic susceptibility during rod-to-sphere transition in a pbpA(Ts) mutant of Escherichia coli , 1981, Antimicrobial Agents and Chemotherapy.

[176]  J. Lutkenhaus FtsZ ring in bacterial cytokinesis , 1993, Molecular microbiology.

[177]  M. Ikeda,et al.  Structural similarity among Escherichia coli FtsW and RodA proteins and Bacillus subtilis SpoVE protein, which function in cell division, cell elongation, and spore formation, respectively , 1989, Journal of bacteriology.

[178]  J. Beckwith,et al.  Localization of FtsI (PBP3) to the Septal Ring Requires Its Membrane Anchor, the Z Ring, FtsA, FtsQ, and FtsL , 1999, Journal of bacteriology.

[179]  M Aldea,et al.  Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli , 1988, Journal of bacteriology.

[180]  L. Rothfield,et al.  A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. , 1991, The EMBO journal.

[181]  W. Donachie,et al.  Cell shape and division in Escherichia coli: experiments with shape and division mutants , 1985, Journal of bacteriology.

[182]  K. Kendrick,et al.  Expression of the division-controlling gene ftsZ during growth and sporulation of the filamentous bacterium Streptomyces griseus. , 1994, Gene.

[183]  E. Bi,et al.  Interaction between the min locus and ftsZ , 1990, Journal of bacteriology.

[184]  L. Rothfield,et al.  The essential bacterial cell-division protein FtsZ is a GTPase , 1992, Nature.

[185]  B. Spratt,et al.  Organization and subcloning of the dacA-rodA-pbpA cluster of cell shape genes in Escherichia coli , 1983, Journal of bacteriology.

[186]  C. Hale,et al.  Direct Binding of FtsZ to ZipA, an Essential Component of the Septal Ring Structure That Mediates Cell Division in E. coli , 1997, Cell.

[187]  E. Bi,et al.  FtsZ ring formation in fts mutants , 1996, Journal of bacteriology.

[188]  J. Beckwith,et al.  Septal Localization of FtsQ, an Essential Cell Division Protein in Escherichia coli , 1999, Journal of bacteriology.

[189]  D. Court,et al.  Control of ftsZ Expression, Cell Division, and Glutamine Metabolism in Luria-Bertani Medium by the Alarmone ppGpp in Escherichia coli , 1998, Journal of bacteriology.

[190]  P. D. de Boer,et al.  Proper placement of the Escherichia coli division site requires two functions that are associated with different domains of the MinE protein. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[191]  B. Bukau,et al.  Cellular defects caused by deletion of the Escherichia coli dnaK gene indicate roles for heat shock protein in normal metabolism , 1989, Journal of bacteriology.

[192]  L. Rice,et al.  Genetic Linkage and Cotransfer of a Novel,vanB-Containing Transposon (Tn5382) and a Low-Affinity Penicillin-Binding Protein 5 Gene in a Clinical Vancomycin-Resistant Enterococcus faecium Isolate , 1998, Journal of bacteriology.

[193]  M. Pucci,et al.  Comparison of the d-Glutamate-Adding Enzymes from Selected Gram-Positive and Gram-Negative Bacteria , 1999, Journal of bacteriology.

[194]  P Bork,et al.  An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and hsp70 heat shock proteins. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[195]  J. García‐Lara,et al.  An extracellular factor regulates expression of sdiA, a transcriptional activator of cell division genes in Escherichia coli , 1996, Journal of bacteriology.

[196]  A. Dopazo,et al.  Characterisation of mutant alleles of the cell division protein FtsA, a regulator and structural component of the Escherichia coli septator. , 1994, Biochimie.

[197]  A. Zaritsky,et al.  Gene transcription and chromosome replication in Escherichia coli , 1997, Journal of bacteriology.

[198]  M. Sugai,et al.  epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus , 1997, Journal of bacteriology.

[199]  J. Strominger,et al.  Morphology of an Escherichia coli mutant with a temperature-dependent round cell shape , 1978, Journal of bacteriology.