Neumann and second boundary value problems for Hessian and Gauß curvature flows
暂无分享,去创建一个
[1] Bennett Chow,et al. Deforming convex hypersurfaces by the $n$th root of the Gaussian curvature , 1985 .
[2] B. Andrews. Gauss curvature flow: the fate of the rolling stones , 1999 .
[3] Xu-jia Wang,et al. A logarithmic Gauss curvature flow and the Minkowski problem , 2000 .
[4] J. Urbas. On the second boundary value problem for equations of Monge-Ampère type. , 1997 .
[5] William J. Firey,et al. Shapes of worn stones , 1974 .
[6] Pierre-Louis Lions,et al. THE Neumann problem for equations of Monge-Ampère type , 1986 .
[7] J. Spruck,et al. Nonlinear Second-Order Elliptic Equations V. The Dirichlet Problem for Weingarten Hypersurfaces , 1988 .
[8] John Urbas. THE SECOND BOUNDARY VALUE PROBLEM FOR A CLASS OF HESSIAN EQUATIONS , 2001 .
[9] J. Urbas. Weingarten hypersurfaces with prescribed gradient image , 2002 .
[10] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[11] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[12] Hypersurfaces of prescribed Weingarten curvature , 1997 .
[13] Oblique boundary value problems for equations of Monge-Ampère type , 1998 .
[14] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[15] R. Hamilton,et al. The free boundary in the Gauss Curvature Flow with flat sides , 1999 .
[16] O. C. Schnürer. The Dirichlet problem for Weingarten hypersurfaces in Lorentz manifolds , 2002 .