The 4H-SiC npn power bipolar junction transistor

The static and dynamic performance of the power silicon carbide BJT is investigated and compared with the silicon carbide UMOSFET by employing a numerical semiconductor simulator. The silicon carbide BJT exhibits superior current handling ability to and switching speed comparable with the SiC MOSFET in the voltage range simulated (1 kV-4 kV). The high current gain of the SiC BJT redresses the base drive problem of the silicon power BJT. It is proposed that research be carried out on the power silicon carbide NPN BJT, since it does not have the premature gate oxide breakdown and low inversion layer mobility problems associated with SiC MOSFET technology.

[1]  Jonathan A. Cooper,et al.  2.6 kV 4H-SiC lateral DMOSFETs , 1998, IEEE Electron Device Letters.

[2]  Kazukuni Hara,et al.  Vital Issues for SiC Power Devices , 1997 .

[3]  A. Agarwal,et al.  1400 V 4H-SiC Power MOSFETs , 1997 .

[4]  Q. Wahab,et al.  Ionization Rates and Critical Fields in 4H SiC Junction Devices , 1997 .

[5]  S. Seshadri,et al.  700-V asymmetrical 4H-SiC gate turn-off thyristors (GTO's) , 1997, IEEE Electron Device Letters.

[6]  M Bakowski,et al.  Simulation of SiC High Power Devices , 1997 .

[7]  S. Sridevan,et al.  Analysis of gate dielectrics for SiC power UMOSFETS , 1997, Proceedings of 9th International Symposium on Power Semiconductor Devices and IC's.

[8]  J. Palmour,et al.  Silicon carbide for power devices , 1997, Proceedings of 9th International Symposium on Power Semiconductor Devices and IC's.

[9]  R. Raghunathan,et al.  Measurement of electron and hole impact ionization coefficients for SiC , 1997, Proceedings of 9th International Symposium on Power Semiconductor Devices and IC's.

[10]  M. Melloch,et al.  High-voltage double-implanted power MOSFET's in 6H-SiC , 1997, IEEE Electron Device Letters.

[11]  M. Bhatnagar,et al.  Silicon carbide high-power devices , 1996 .

[12]  Christer Hallin,et al.  The minority carrier lifetime of n‐type 4H‐ and 6H‐SiC epitaxial layers , 1996 .

[13]  J.H. Zhao,et al.  A high-current and high-temperature 6H-SiC thyristor , 1996, IEEE Electron Device Letters.

[14]  R. P. Joshi,et al.  Monte Carlo calculations of the temperature‐ and field‐dependent electron transport parameters for 4H‐SiC , 1995 .

[15]  Steven T. Peake,et al.  Power semiconductor devices , 1995 .

[16]  H. Matsunami,et al.  High‐quality 4H‐SiC homoepitaxial layers grown by step‐controlled epitaxy , 1994 .

[17]  W. Suttrop,et al.  Nitrogen donors in 4H‐silicon carbide , 1993 .

[18]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[19]  W. J. Choyke,et al.  Absorption of Light in Alpha SiC near the Band Edge , 1957 .

[20]  T. F. Podlesak,et al.  Silicon carbide thyristors for electric guns , 1997 .

[21]  J. Palmour,et al.  Conductivity Anisotropy in Epitaxial 6H and 4H Sic , 1994 .

[22]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .