Molecular Heat Engines: Quantum Coherence Effects

Recent developments in nanoscale experimental techniques made it possible to utilize single molecule junctions as devices for electronics and energy transfer with quantum coherence playing an important role in their thermoelectric characteristics. Theoretical studies on the efficiency of nanoscale devices usually employ rate (Pauli) equations, which do not account for quantum coherence. Therefore, the question whether quantum coherence could improve the efficiency of a molecular device cannot be fully addressed within such considerations. Here, we employ a nonequilibrium Green function approach to study the effects of quantum coherence and dephasing on the thermoelectric performance of molecular heat engines. Within a generic bichromophoric donor-bridge-acceptor junction model, we show that quantum coherence may increase efficiency compared to quasi-classical (rate equation) predictions and that pure dephasing and dissipation destroy this effect.

[1]  Michael Galperin,et al.  Photonics and spectroscopy in nanojunctions: a theoretical insight. , 2017, Chemical Society reviews.

[2]  Bruno Leggio,et al.  Quantum thermal machines with single nonequilibrium environments , 2015, 1501.01791.

[3]  Upendra Harbola,et al.  Thermodynamics of quantum heat engines , 2013 .

[4]  W. Ho,et al.  Imaging single electron spin in a molecule trapped within a nanocavity of tunable dimension. , 2013, The Journal of chemical physics.

[5]  G. Vineyard,et al.  Semiconductor Thermoelements and Thermoelectric Cooling , 1957 .

[6]  Massimiliano Esposito,et al.  A self-consistent quantum master equation approach to molecular transport , 2010, 1004.2533.

[7]  Marlan O Scully,et al.  Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. , 2010, Physical review letters.

[8]  Severin T. Schneebeli,et al.  Probing the conductance superposition law in single-molecule circuits with parallel paths , 2012, Nature Nanotechnology.

[9]  Feng Chen,et al.  Nonequilibrium diagrammatic technique for Hubbard Green functions , 2016, 1610.00036.

[10]  Supriyo Datta,et al.  Nonequilibrium Green's function based models for dephasing in quantum transport , 2007 .

[11]  Marcel Mayor,et al.  Electric current through a molecular rod-relevance of the position of the anchor groups. , 2003, Angewandte Chemie.

[12]  G. Fleming,et al.  Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. , 2010, Physical chemistry chemical physics : PCCP.

[13]  Chen Xu,et al.  Real-space imaging of molecular structure and chemical bonding by single-molecule inelastic tunneling probe , 2014, Science.

[14]  Richard P Van Duyne,et al.  Fano-like resonances arising from long-lived molecule-plasmon interactions in colloidal nanoantennas. , 2012, Nano letters.

[15]  S. Datta,et al.  Thermoelectric effect in molecular electronics , 2003, cond-mat/0301232.

[16]  Mark A. Ratner,et al.  Inelastic effects in molecular junction transport: scattering and self-consistent calculations for the Seebeck coefficient , 2007, 0709.3610.

[17]  A. Aharony,et al.  Three-terminal thermoelectric transport through a molecule placed on an Aharonov-Bohm ring , 2011, 1105.3994.

[18]  Michael Galperin,et al.  Simulation of optical response functions in molecular junctions. , 2016, The Journal of chemical physics.

[19]  Wonho Jeong,et al.  Electrostatic control of thermoelectricity in molecular junctions. , 2014, Nature nanotechnology.

[20]  Pierre Gaspard,et al.  Scattering approach to the thermodynamics of quantum transport , 2015 .

[21]  Ronnie Kosloff,et al.  Quantum heat engines and refrigerators: continuous devices. , 2013, Annual review of physical chemistry.

[22]  Abraham Nitzan,et al.  Maximum efficiency of state-space models of molecular scale engines , 2015 .

[23]  Martin Centurion,et al.  Imaging of isolated molecules with ultrafast electron pulses. , 2012, Physical review letters.

[24]  Michael Y. Galperin,et al.  Coherence in charge and energy transfer in molecular junctions , 2013 .

[25]  Massimiliano Esposito,et al.  Efficiency fluctuations in quantum thermoelectric devices , 2015 .

[26]  Hervé Ness,et al.  Nonequilibrium Thermodynamics and Steady State Density Matrix for Quantum Open Systems , 2017, Entropy.

[27]  Ronnie Kosloff,et al.  The Quantum Harmonic Otto Cycle , 2016, Entropy.

[28]  Mark Ratner,et al.  A brief history of molecular electronics. , 2013, Nature nanotechnology.

[29]  M. Leijnse,et al.  Kinetic equations for transport through single-molecule transistors , 2008, 0807.4027.

[30]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[31]  Florian Schwarz,et al.  Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions. , 2016, Nature nanotechnology.

[32]  Dmitri V. Voronine,et al.  Photosynthetic reaction center as a quantum heat engine , 2013, Proceedings of the National Academy of Sciences.

[33]  Feng Chen,et al.  Towards Noise Simulation in Interacting Nonequilibrium Systems Strongly Coupled to Baths , 2017, Scientific Reports.

[34]  S. Emmott,et al.  Efficient biologically inspired photocell enhanced by delocalized quantum states. , 2013, Physical review letters.

[35]  Elke Scheer,et al.  Visions for a molecular future. , 2013, Nature nanotechnology.

[36]  Gianluca Stefanucci,et al.  Nonequilibrium Many-Body Theory of Quantum Systems: A Modern Introduction , 2013 .

[37]  H. Linke,et al.  Reversible thermoelectric nanomaterials. , 2004, Physical Review Letters.

[38]  Massimiliano Esposito,et al.  Nature of heat in strongly coupled open quantum systems , 2014, 1408.3608.

[39]  Uri Peskin,et al.  Coherently controlled molecular junctions. , 2012, The Journal of chemical physics.

[40]  Latha Venkataraman,et al.  Simultaneous determination of conductance and thermopower of single molecule junctions. , 2012, Nano letters.

[41]  Justin R Caram,et al.  Long-lived quantum coherence in photosynthetic complexes at physiological temperature , 2010, Proceedings of the National Academy of Sciences.

[42]  Yu-Shen Liu,et al.  Seebeck coefficient of thermoelectric molecular junctions: First-principles calculations , 2008, 0812.0400.

[43]  Massimiliano Esposito,et al.  Reaching optimal efficiencies using nanosized photoelectric devices , 2009, 0907.4189.

[44]  Meir,et al.  Time-dependent transport in interacting and noninteracting resonant-tunneling systems. , 1994, Physical review. B, Condensed matter.

[45]  Ferdi Altintas,et al.  Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits , 2015 .

[46]  Shaul Mukamel,et al.  Heat fluctuations and coherences in a quantum heat engine , 2012 .

[47]  Arun Majumdar,et al.  Thermoelectricity in Molecular Junctions , 2007, Science.

[48]  Yonatan Dubi,et al.  Thermoelectric effects in nanoscale junctions. , 2008, Nano letters.

[49]  Hohjai Lee,et al.  Coherence Dynamics in Photosynthesis: Protein Protection of Excitonic Coherence , 2007, Science.

[50]  Kamal K. Saha,et al.  First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes , 2012 .

[51]  Abraham Nitzan,et al.  Heterojunction organic photovoltaic cells as molecular heat engines: A simple model for the performance analysis , 2011, 1107.0924.

[52]  Abraham Nitzan,et al.  Energy distribution and local fluctuations in strongly coupled open quantum systems: The extended resonant level model , 2016, 1607.07120.

[53]  Jonas Fransson,et al.  Spin Seebeck coefficient of a molecular spin pump. , 2011, Physical chemistry chemical physics : PCCP.

[54]  Michael Y. Galperin,et al.  Nonequilibrium Atomic Limit for Transport and Optical Response of Molecular Junctions , 2014 .

[55]  K. Flensberg,et al.  Nonlinear thermoelectric properties of molecular junctions with vibrational coupling , 2010, 1004.4500.

[56]  A. Aharony,et al.  Three-terminal thermoelectric transport through a molecular junction , 2010, 1005.3940.

[57]  Michael Chabinyc,et al.  Thermoelectric polymers: Behind organics' thermopower. , 2014, Nature materials.

[58]  Yu-Shen Liu,et al.  Thermoelectric efficiency in nanojunctions: a comparison between atomic junctions and molecular junctions. , 2009, ACS nano.

[59]  Antoine Georges,et al.  A Thermoelectric Heat Engine with Ultracold Atoms , 2013, Science.

[60]  Abraham Nitzan,et al.  Network Analysis of Photovoltaic Energy Conversion , 2014 .

[61]  P. McEuen,et al.  Thermal transport measurements of individual multiwalled nanotubes. , 2001, Physical Review Letters.

[62]  Marcel Mayor,et al.  Experimental evidence for quantum interference and vibrationally induced decoherence in single-molecule junctions. , 2012, Physical review letters.

[63]  Per-Olov Löwdin,et al.  QUANTUM THEORY OF MANY-PARTICLE SYSTEMS. , 1969 .

[64]  Joonhee Lee,et al.  Vibronic motion with joint angstrom-femtosecond resolution observed through Fano progressions recorded within one molecule. , 2014, ACS nano.

[65]  Akihide Arima,et al.  Thermoelectricity in atom-sized junctions at room temperatures , 2013, Scientific Reports.

[66]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[67]  Hideo Aoki,et al.  Nonequilibrium dynamical mean-field theory and its applications , 2013, 1310.5329.

[68]  Rolf Möller,et al.  Imaging the dynamics of individually adsorbed molecules. , 2013, Nature materials.

[69]  David Sánchez,et al.  Scattering theory of nonlinear thermoelectric transport. , 2012, Physical review letters.

[70]  Hartmut Haug,et al.  Quantum Kinetics in Transport and Optics of Semiconductors , 2004 .

[71]  Bart Cleuren,et al.  Stochastic efficiency for effusion as a thermal engine , 2014, 1411.3531.

[72]  Abraham Nitzan,et al.  Optical properties of current carrying molecular wires. , 2006, The Journal of chemical physics.

[73]  Shannon K. Yee,et al.  Fundamentals of energy transport, energy conversion, and thermal properties in organic-inorganic heterojunctions , 2010 .

[74]  Ho-Ki Lyeo,et al.  Seebeck effect at the atomic scale. , 2014, Physical review letters.